User Tools

Site Tools


theories:classical_mechanics:lagrangian

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
theories:classical_mechanics:lagrangian [2018/04/12 17:06]
bogumilvidovic [Concrete]
theories:classical_mechanics:lagrangian [2018/10/11 14:12] (current)
jakobadmin [Abstract]
Line 1: Line 1:
 ====== Lagrangian Mechanics ====== ====== Lagrangian Mechanics ======
 +//see also [[formalisms:​lagrangian_formalism]] //
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
  
-<note tip> +In Lagrangian mechanics we derive how a particle will evolve using the idea that ‘total amount that happened’ from 
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party+one moment to another as particle traces out path is minimal
-</​note>​ + 
-  +So formulated differently,​ the basic idea is that nature is lazy. All we have to do is find the laziest way to realize something and this is exactly how nature will behave.
 <tabbox Concrete> ​ <tabbox Concrete> ​
 In Lagrangian mechanics we define a quantity In Lagrangian mechanics we define a quantity
Line 19: Line 19:
 \end{equation} \end{equation}
  
-[{{ :theories:trajectories.png?​nolink&​400|Source: Lectures on Classical Mechanics by [[http://​math.ucr.edu/​home/​baez/​classical/​texfiles/​2005/​book/​classical.pdf|John C. Baez]]}}]+{{ :theories:classical_mechanics:​lagrangianpfad.png?​nolink&​400|}}
  
 The basic idea is now that nature causes ​ The basic idea is now that nature causes ​
 particles to follow the trajectories with the //least// amount of action. ​ particles to follow the trajectories with the //least// amount of action. ​
  
-In the image on the right-hand side this could be the solid line denotes by $q$. Another path is shown as a dashed line and denoted by $q(s)$. The Lagrangian approach assigns to each path a quantity called action as defined above and then tells us that the correct path that an object really follows is the path with minimal action. In our example the path $q$ could have an action of $3$ and the path $q_s$ an action of $5$. Hence, path $q$ is correct and not path $q_s$.+In the image on the right-hand side this could be the solid line denotes by $q$. Another path is shown as a dashed line and denoted by $q(s)$. ​ 
 + 
 +The Lagrangian approach assigns to each path a quantity called action as defined above and then tells us that the correct path that an object really follows is the path with minimal action. In our example the path $q$ could have an action of $3$ and the path $q_s$ an action of $5$. Hence, path $q$ is correct and not path $q_s$.
  
  
Line 36: Line 38:
 ---- ----
  
-Using the Lagrangian approach, we can derive [[theories:newtonian_mechanics|Newtonian mechanics]]. Alternatively,​ we can start with Newtonian mechanics and derive Lagrangian mechanics.+Using the Lagrangian approach, we can derive [[theories:classical_mechanics:​newtonian|Newtonian mechanics]]. Alternatively,​ we can start with Newtonian mechanics and derive Lagrangian mechanics.
  
 -->​Derivation of Newton'​s second law# -->​Derivation of Newton'​s second law#
Line 105: Line 107:
 \] \]
 <-- <--
 +
 +---- 
 +
 +**Examples**
 +
 +--> Harmonic Oscillator#
 +
 +The Lagrangian in classical mechanics is given by the kinetic energy $ \cal T$ minus the potential energy $ \cal U$:
 +
 +$$  \cal L=T-U . $$
 +
 +Therefore, a harmonic oscillator in the Lagrangian framework is characterized by the action
 +
 +$$ S = \int dt \left( \frac{m}{2} \left(\frac{dx}{dt}\right) - \frac{k}{2}x^2 \right) ,$$
 +where $L= \frac{m}{2} \left(\frac{dx}{dt}\right) - \frac{k}{2}x^2$ is the //​Lagrangian//​. ​
 +
 +Starting from this action, we can derive the equation of motion ​ by using the [[equations:​euler_lagrange_equations|Euler-Lagrange equation]].
 +
 +$$ \frac{\partial {\cal L}}{\partial x}-\frac{d}{dt}(\frac{\partial ​ {\cal L}}{\partial dot{x}})= 0   ​$$ ​
 +
 +$$ \Rightarrow ​ m \frac{d^2}{dt^2} x -kx= 0$$
 +
 +<--
 +
 +--> Pendulum#
 +
 +The Lagrangian for the pendulum can be written
 +\[{\cal L=T-U}=\frac{mr^2\dot{\theta}^2}{2}+mgr\cos\theta\]
 +The equation of motion is
 +\[\frac{\partial {\cal L}}{\partial \theta}-\frac{d}{dt}(\frac{\partial ​ {\cal L}}{\partial dot{\theta}})=
 +-mgr\sin\theta-mr^2\frac{d\dot\theta}{dt}=0\]
 +giving:
 +\[\ddot{\theta}+\frac{g}{r}\sin\theta=0\]
 +
 +
 +**Small Amplitude Approximation**
 +
 +If  $\theta <<1$ then $\sin\theta\approx\theta$
 +and
 +\[\frac{d^2\theta}{dt^2}+\frac{g}{r}\theta\]
 +This solution describes simple harmonic motion
 +\[\theta=A\cos(\omega t-\phi)\]
 +where 
 +\[\omega=\sqrt{\frac{g}{r}}\]
 +and the constants $A$ and $\phi$ are determined from 
 +the initial condition
 +E.g. if $\theta=0,​\;​t=0$ then $\phi=\pm \frac{\pi}{2}$.
 +If $d\theta/​dt=0,​\;​t=0$ then $\phi=0,$ or $\pi$
 +(depending on whether the pendulum is moving to the left or 
 +right initially)
 +The period is
 +\[\tau=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{r}{g}}\]
 +
 +
 +**Finite Amplitude**
 +
 +If the amplitude ​ is not small we have
 +to solve the  nonlinear equation
 +\[\frac{d^2\theta}{dt^2}+\frac{g}{r}\sin \theta=0\]
 +(nonlinear because sin $\theta$ is a nonlinear
 +function of the dependent variable $\theta$.)
 + 
 +<--
 +
 +-->The Atwood Machine#
 +A frictionless pulley with two masses, $m_1$ and $m_2$, hanging from it.
 +
 +We have
 +\begin{align*}
 + K &= \frac{1}{2}(m_1+m_2)(\frac{d}{dt}(\ell-x))^2 ​ = 
 +\frac{1}{2}(m_1+m_2)\dot{x}^2 \\
 + V &= -m_1 g x - m_2 g(\ell-x) \\
 + ​\text{so }
 + L &= K-V = \frac{1}{2}(m_1+m_2)\dot{x}^2 + m_1gx+m_2g(\ell-x)
 +\end{align*}
 +The configuration space is $Q=(0,​\ell)$,​ and $x\in(0,​\ell)$. ​ Moreover $TQ=(0,​\ell)\times\mathbb{R}\ni(x,​\dot{x})$.
 +As usual $L:​TQ\rightarrow\mathbb{R}$. ​ Note that solutions of the Euler-Lagrange equations will only be defined for \emph{some} time $t\in\mathbb{R}$,​ as eventually the solutions reaches the ``edge''​ of $Q$.
 +
 +The momentum is:
 +\[
 + p = \frac{\partial L}{\partial\dot{x}} = (m_1+m_2)\dot{x}
 +\]
 +and the force is:
 +\[
 + F = \frac{\partial L}{\partial x} = (m_1-m_2)g
 +\]
 +The Euler-Lagrange equations say
 +\begin{align*}
 + ​\dot{p} &= F \\
 + ​(m_1+m_2)\ddot{x} &= (m_1-m_2)g \\
 + ​\ddot{x} &= \frac{m_1-m_2}{m_1+m_2}g
 +\end{align*}
 +So this is like a falling object in a downwards gravitational acceleration $a=\left(\frac{m_1-m_2}{m_1+m_2}\right)g$.
 +
 +
 +We integrate the expression for $\ddot{x}$ twice to obtain the general solution to the motion $x(t)$. ​ Note that $\ddot{x}=0$ when $m_1=m_2$, and $\ddot{x}=g$ if $m_2=0$.
 +<--
 +
 +----
 +
 +**Reading Recommendations**
 +
 +  * The best book on Lagrangian mechanics is The Lazy Universe by Coopersmith
 +  * Many problems with solutions are collected in [[https://​archive.org/​details/​SchaumsTheoryAndProblemsOfTheoreticalMechanics|Schaum'​s Outline of Theory and Problems of Theoretical Mechanics]] by Murray R Spiegel ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
 Lagrangian mechanics can be formulated geometrically using [[advanced_tools:​fiber_bundles|fibre bundles]]. Lagrangian mechanics can be formulated geometrically using [[advanced_tools:​fiber_bundles|fibre bundles]].
Line 117: Line 223:
 ---- ----
  
 +  * [[https://​core.ac.uk/​download/​pdf/​4887416.pdf|Lectures on Mechanics]] by Marsden
   * See page 471 in Road to Reality by R. Penrose, page 167 in Geometric Methods of Mathematical Physics by B. Schutz and http://​philsci-archive.pitt.edu/​2362/​1/​Part1ButterfForBub.pdf. ​   * See page 471 in Road to Reality by R. Penrose, page 167 in Geometric Methods of Mathematical Physics by B. Schutz and http://​philsci-archive.pitt.edu/​2362/​1/​Part1ButterfForBub.pdf. ​
  
theories/classical_mechanics/lagrangian.1523545616.txt.gz · Last modified: 2018/04/12 15:06 (external edit)