User Tools

Site Tools


theories:classical_mechanics:lagrangian

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
theories:classical_mechanics:lagrangian [2018/04/12 16:54]
bogumilvidovic [Concrete]
theories:classical_mechanics:lagrangian [2018/10/11 14:12] (current)
jakobadmin [Abstract]
Line 1: Line 1:
 ====== Lagrangian Mechanics ====== ====== Lagrangian Mechanics ======
 +//see also [[formalisms:​lagrangian_formalism]] //
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
  
-<note tip> +In Lagrangian mechanics we derive how a particle will evolve using the idea that ‘total amount that happened’ from 
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party+one moment to another as particle traces out path is minimal
-</​note>​ + 
-  +So formulated differently,​ the basic idea is that nature is lazy. All we have to do is find the laziest way to realize something and this is exactly how nature will behave.
 <tabbox Concrete> ​ <tabbox Concrete> ​
 In Lagrangian mechanics we define a quantity In Lagrangian mechanics we define a quantity
 \begin{equation} \begin{equation}
- L\defeq K(t)-V(q(t))+ L\equiv K(t)-V(q(t))
 \end{equation} \end{equation}
 called the __Lagrangian__. In addition, for any trajectory ​ called the __Lagrangian__. In addition, for any trajectory ​
-$q \colon [t_0,​t_1]\rightarrow\mathbb{R}^n$ with $q(t_0)=a$, $q(t_1)=b$, we +$q$ with $q(t_0)=a$, $q(t_1)=b$, we 
 we define the corresponding __action__ we define the corresponding __action__
 \begin{equation} \begin{equation}
- S(q)\defeq \int_{t_0}^{t_1}L(t)\,​dt.+ S(q)\equiv \int_{t_0}^{t_1}L(t)\,​dt.
 \end{equation} \end{equation}
 +
 +{{ :​theories:​classical_mechanics:​lagrangianpfad.png?​nolink&​400|}}
  
 The basic idea is now that nature causes ​ The basic idea is now that nature causes ​
 particles to follow the trajectories with the //least// amount of action. ​ particles to follow the trajectories with the //least// amount of action. ​
  
-Using this approach, we can derive [[theories:newtonian_mechanics|Newtonian mechanics]]. Alternatively,​ we can start with Newtonian mechanics and derive Lagrangian mechanics.+In the image on the right-hand side this could be the solid line denotes by $q$. Another path is shown as a dashed line and denoted by $q(s)$.  
 + 
 +The Lagrangian approach assigns to each path a quantity called action as defined above and then tells us that the correct path that an object really follows is the path with minimal action. In our example the path $q$ could have an action of $3$ and the path $q_s$ an action of $5$. Hence, path $q$ is correct and not path $q_s$. 
 + 
 + 
 + 
 +---- 
 + 
 +The mathematical toolset that we use to find the paths with minima action is known as [[basic_tools:​variational_calculus|variational calculus]].  
 + 
 +The final result using this machinery is that the path with minimal action is the one that satisfies the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]]. 
 + 
 +---- 
 + 
 +Using the Lagrangian ​approach, we can derive [[theories:classical_mechanics:​newtonian|Newtonian mechanics]]. Alternatively,​ we can start with Newtonian mechanics and derive Lagrangian mechanics. 
 + 
 +-->​Derivation of Newton'​s second law# 
 + 
 +A point with minimal action is $S$ defined through the condition 
 +\begin{equation} 
 + ​\left. \frac{d}{ds}S(q_s)\right|_{s=0} = 0 
 +\end{equation} 
 +where 
 +\[ 
 + q_s = q + s\delta q 
 +\] 
 +for all $\delta q \colon [t_0,​t_1]\rightarrow\mathbb{R}^n$ with 
 +\[ 
 + ​\delta q(t_0)=\delta q(t_1)=0. 
 +\] 
 +We want to derive 
 +\begin{equation} 
 + F=ma \quad \Leftrightarrow \quad  
 +\left.\frac{d}{ds} S(q_s)\right|_{s=0}=0 \; 
 + ​\textrm{for all} \; \delta q\colon [t_0,​t_1]\rightarrow\mathbb{R}^n  
 +\; \textrm{with}\; ​ \delta q(t_0)=\delta q(t_1)=0. 
 +\end{equation} 
 +To do this, we now use the definition of the action and the chain rule: 
 +\[ 
 + ​\begin{split} 
 +  \left.\frac{d}{ds}S(q_s)\right|_{s=0} &= \frac{d}{ds}\left.\int_{t_0}^{t_1} 
 +  \frac{1}{2}m\dot{q}_s(t)\cdot\dot{q}_s(t)-V(q_s(t))\,​dt\right|_{s=0} \\ \\ 
 +  &= \left.\int_{t_0}^{t_1}\frac{d}{ds}\left[ 
 +  \frac{1}{2}m\dot{q}_s(t) \cdot \dot{q}_s(t) - 
 +  V(q_s(t))\right]dt\right|_{s=0} \\ \\ 
 +  &= \left.\int_{t_0}^{t_1}\left[ 
 +  m\dot{q}_s \cdot \frac{d}{ds}\dot{q}_s(t)- \nabla V(q_s(t)) \cdot \frac{d}{ds}q_s(t)\right]dt\right|_{s=0} \\ 
 +\end{split} 
 +\] 
 +Next we note that 
 +\[    \frac{d}{ds} q_s (t) = \delta q(t)  \] 
 +so 
 +\[    \frac{d}{ds} \dot{q}_s (t) = \frac{d}{ds} \frac{d}{dt} {q}_s (t) 
 +                                 = \frac{d}{dt} \frac{d}{ds} {q}_s (t)  
 +                                 = \frac{d}{dt} \delta{q}(t) .\] 
 +Therefore we have 
 +\[ 
 +\begin{split} 
 +  \left.\frac{d}{ds}S(q_s)\right|_{s=0} &=  
 +  \int_{t_0}^{t_1}\left[ m\dot{q} \cdot \frac{d}{dt} \delta q(t) -  
 + ​\nabla V(q(t)) \cdot \delta q(t)\right]dt . 
 + ​\end{split} 
 +\] 
 +Finally, we can integrate by parts and note that the boundary terms vanish  
 +because $\delta q=0$ at $t_1$ and $t_0$: 
 +\[ 
 + ​\begin{split} 
 +  \frac{d}{ds}S(q_s)\rvert_{s=0}  
 +  &= \left.\int_{t_0}^{t_1}\left[ -m\ddot{q}(t)-\nabla V(q(t))\right] 
 +\cdot \delta q(t) dt\right. . \\ 
 + ​\end{split} 
 +\] 
 +Looking at this, we can see that the variation of the action vanishes for //all// possible 
 +variations $\delta q$ if and only if the term in brackets is exactly 
 +zero: 
 +\[ 
 + ​-m\ddot{q}(t)-\nabla V(q(t)) = 0. 
 +\] 
 +Therefore, the correct path $q$ with a minimal amount of action $S$ is the one that follows from the equation 
 +\[ 
 + ​F=ma. 
 +\] 
 +<-- 
 + 
 +----  
 + 
 +**Examples** 
 + 
 +--> Harmonic Oscillator#​ 
 + 
 +The Lagrangian in classical mechanics is given by the kinetic energy $ \cal T$ minus the potential energy $ \cal U$: 
 + 
 +$$  \cal L=T-U . $$ 
 + 
 +Therefore, a harmonic oscillator in the Lagrangian framework is characterized by the action 
 + 
 +$$ S = \int dt \left( \frac{m}{2} \left(\frac{dx}{dt}\right) - \frac{k}{2}x^2 \right) ,$$ 
 +where $L= \frac{m}{2} \left(\frac{dx}{dt}\right) - \frac{k}{2}x^2$ is the //​Lagrangian//​.  
 + 
 +Starting from this action, we can derive the equation of motion ​ by using the [[equations:​euler_lagrange_equations|Euler-Lagrange equation]]. 
 + 
 +$$ \frac{\partial {\cal L}}{\partial x}-\frac{d}{dt}(\frac{\partial ​ {\cal L}}{\partial dot{x}})= 0   $$  
 + 
 +$$ \Rightarrow ​ m \frac{d^2}{dt^2} x -kx= 0$$ 
 + 
 +<-- 
 + 
 +--> Pendulum# 
 + 
 +The Lagrangian for the pendulum can be written 
 +\[{\cal L=T-U}=\frac{mr^2\dot{\theta}^2}{2}+mgr\cos\theta\] 
 +The equation of motion is 
 +\[\frac{\partial {\cal L}}{\partial \theta}-\frac{d}{dt}(\frac{\partial ​ {\cal L}}{\partial dot{\theta}})= 
 +-mgr\sin\theta-mr^2\frac{d\dot\theta}{dt}=0\] 
 +giving: 
 +\[\ddot{\theta}+\frac{g}{r}\sin\theta=0\] 
 + 
 + 
 +**Small Amplitude Approximation** 
 + 
 +If  $\theta <<1$ then $\sin\theta\approx\theta$ 
 +and 
 +\[\frac{d^2\theta}{dt^2}+\frac{g}{r}\theta\] 
 +This solution describes simple harmonic motion 
 +\[\theta=A\cos(\omega t-\phi)\] 
 +where  
 +\[\omega=\sqrt{\frac{g}{r}}\] 
 +and the constants $A$ and $\phi$ are determined from  
 +the initial condition 
 +E.g. if $\theta=0,​\;​t=0$ then $\phi=\pm \frac{\pi}{2}$. 
 +If $d\theta/​dt=0,​\;​t=0$ then $\phi=0,$ or $\pi$ 
 +(depending on whether the pendulum is moving to the left or  
 +right initially) 
 +The period is 
 +\[\tau=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{r}{g}}\] 
 + 
 + 
 +**Finite Amplitude** 
 + 
 +If the amplitude ​ is not small we have 
 +to solve the  nonlinear equation 
 +\[\frac{d^2\theta}{dt^2}+\frac{g}{r}\sin \theta=0\] 
 +(nonlinear because sin $\theta$ is a nonlinear 
 +function of the dependent variable $\theta$.) 
 +  
 +<-- 
 + 
 +-->The Atwood Machine# 
 +A frictionless pulley with two masses, $m_1$ and $m_2$, hanging from it. 
 + 
 +We have 
 +\begin{align*} 
 + K &= \frac{1}{2}(m_1+m_2)(\frac{d}{dt}(\ell-x))^2 ​ =  
 +\frac{1}{2}(m_1+m_2)\dot{x}^2 \\ 
 + V &= -m_1 g x - m_2 g(\ell-x) \\ 
 + ​\text{so } 
 + L &= K-V = \frac{1}{2}(m_1+m_2)\dot{x}^2 + m_1gx+m_2g(\ell-x) 
 +\end{align*} 
 +The configuration space is $Q=(0,​\ell)$,​ and $x\in(0,​\ell)$. ​ Moreover $TQ=(0,​\ell)\times\mathbb{R}\ni(x,​\dot{x})$. 
 +As usual $L:​TQ\rightarrow\mathbb{R}$. ​ Note that solutions of the Euler-Lagrange equations will only be defined for \emph{some} time $t\in\mathbb{R}$,​ as eventually the solutions reaches the ``edge''​ of $Q$. 
 + 
 +The momentum is: 
 +\[ 
 + p = \frac{\partial L}{\partial\dot{x}} = (m_1+m_2)\dot{x} 
 +\] 
 +and the force is: 
 +\[ 
 + F = \frac{\partial L}{\partial x} = (m_1-m_2)g 
 +\] 
 +The Euler-Lagrange equations say 
 +\begin{align*} 
 + ​\dot{p} &= F \\ 
 + ​(m_1+m_2)\ddot{x} &= (m_1-m_2)g \\ 
 + ​\ddot{x} &= \frac{m_1-m_2}{m_1+m_2}g 
 +\end{align*} 
 +So this is like a falling object in a downwards gravitational acceleration $a=\left(\frac{m_1-m_2}{m_1+m_2}\right)g$. 
 + 
 + 
 +We integrate the expression for $\ddot{x}$ twice to obtain the general solution to the motion $x(t)$. ​ Note that $\ddot{x}=0$ when $m_1=m_2$, and $\ddot{x}=g$ if $m_2=0$. 
 +<-- 
 + 
 +---- 
 + 
 +**Reading Recommendations**
  
 +  * The best book on Lagrangian mechanics is The Lazy Universe by Coopersmith
 +  * Many problems with solutions are collected in [[https://​archive.org/​details/​SchaumsTheoryAndProblemsOfTheoreticalMechanics|Schaum'​s Outline of Theory and Problems of Theoretical Mechanics]] by Murray R Spiegel ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
 Lagrangian mechanics can be formulated geometrically using [[advanced_tools:​fiber_bundles|fibre bundles]]. Lagrangian mechanics can be formulated geometrically using [[advanced_tools:​fiber_bundles|fibre bundles]].
Line 36: Line 223:
 ---- ----
  
 +  * [[https://​core.ac.uk/​download/​pdf/​4887416.pdf|Lectures on Mechanics]] by Marsden
   * See page 471 in Road to Reality by R. Penrose, page 167 in Geometric Methods of Mathematical Physics by B. Schutz and http://​philsci-archive.pitt.edu/​2362/​1/​Part1ButterfForBub.pdf. ​   * See page 471 in Road to Reality by R. Penrose, page 167 in Geometric Methods of Mathematical Physics by B. Schutz and http://​philsci-archive.pitt.edu/​2362/​1/​Part1ButterfForBub.pdf. ​
  
theories/classical_mechanics/lagrangian.1523544892.txt.gz · Last modified: 2018/04/12 14:54 (external edit)