Both sides previous revision Previous revision Next revision | Previous revision | ||
theories:classical_field_theory [2018/03/30 10:15] jakobadmin [Concrete] |
theories:classical_field_theory [2018/04/15 12:36] (current) ida [Concrete] |
||
---|---|---|---|
Line 23: | Line 23: | ||
A classical field is a dynamical system with an **infinite number** of degrees of freedom. We describe fields mathematically by partial differential equations. | A classical field is a dynamical system with an **infinite number** of degrees of freedom. We describe fields mathematically by partial differential equations. | ||
+ | ---- | ||
+ | |||
+ | The action functional $S[\phi(x)]$ for a free real scalar field of mass $m$ is | ||
+ | \begin{eqnarray} | ||
+ | S[\phi(x)]\equiv \int d^{4}x \,\mathcal{L}(\phi,\partial_{\mu}\phi)= | ||
+ | {1\over 2}\int d^{4}x \,\left(\partial_{\mu}\phi\partial^{\mu}\phi- | ||
+ | {m^{2}}\phi^2\right). | ||
+ | \end{eqnarray} | ||
+ | We can calculate the equations of motion are obtained by using [[equations:euler_lagrange_equations|the Euler-Lagrange | ||
+ | equations]] | ||
+ | \begin{eqnarray} | ||
+ | \partial_{\mu}\left[\partial\mathcal{L}\over \partial(\partial_{\mu}\phi) | ||
+ | \right]-{\partial\mathcal{L}\over \partial\phi}=0 \quad | ||
+ | \Longrightarrow \quad (\partial_{\mu}\partial^{\mu}+m^{2})\phi=0. | ||
+ | \label{eq:eomKG} | ||
+ | \end{eqnarray} | ||
+ | |||
+ | The momentum canonically conjugated to the field $\phi(x)$ is given by | ||
+ | \begin{eqnarray} | ||
+ | \pi(x)\equiv {\partial\mathcal{L}\over \partial(\partial_{0}\phi)} | ||
+ | ={\partial\phi\over\partial t}. | ||
+ | \end{eqnarray} | ||
+ | |||
+ | The corresponding Hamiltonian function is | ||
+ | \begin{eqnarray} | ||
+ | H\equiv \int d^{3}x \left(\pi{\partial\phi\over\partial t}-\mathcal{L}\right) | ||
+ | = {1\over 2}\int d^{3}x\left[ | ||
+ | \pi^2+(\vec{\nabla}\phi)^{2}+m^{2}\right]. | ||
+ | \end{eqnarray} | ||
+ | |||
+ | In classical theories, we can write the equations of motionin terms of the [[advanced_notions:poisson_bracket|Poisson | ||
+ | brackets]]: | ||
+ | \begin{eqnarray} | ||
+ | \{A,B\}\equiv \int d^{3}x\left[{\delta {A}\over \delta \phi} | ||
+ | {\delta{B}\over \delta\pi}- | ||
+ | {\delta{A}\over \delta\pi}{\delta{B}\over \delta\phi} | ||
+ | \right], | ||
+ | \end{eqnarray} | ||
+ | where ${\delta\over \delta \phi}$ denotes the functional derivative | ||
+ | defined as | ||
+ | \begin{eqnarray} | ||
+ | {\delta A\over \delta\phi}\equiv {\partial\mathcal{A}\over | ||
+ | \partial\phi}-\partial_{\mu}\left[{\partial\mathcal{A} | ||
+ | \over \partial(\partial_{\mu}\phi)}\right] | ||
+ | \end{eqnarray} | ||
+ | The canonically conjugated classical fields satisfy the | ||
+ | following equal time Poisson brackets | ||
+ | \begin{eqnarray} | ||
+ | \{\phi(t,\vec{x}),\phi(t,\vec{x}\,')\}&=&\{\pi(t,\vec{x}), | ||
+ | \pi(t,\vec{x}\,')\}=0,\nonumber \\ | ||
+ | \{\phi(t,\vec{x}),\pi(t,\vec{x}\,')\}&=&\delta(\vec{x}-\vec{x}\,'). | ||
+ | \label{eq:etccr} | ||
+ | \end{eqnarray} | ||
---- | ---- |