Both sides previous revision Previous revision Next revision | Previous revision | ||
advanced_tools:group_theory:lorentz_group [2018/04/06 15:43] jakobadmin [Concrete] |
advanced_tools:group_theory:lorentz_group [2025/03/04 01:00] (current) edi [Abstract] |
||
---|---|---|---|
Line 9: | Line 9: | ||
| | ||
<tabbox Concrete> | <tabbox Concrete> | ||
- | It follows from the postulates of [[theories:special_relativity|special relativity]] that | + | **Definition of the Lorentz transformations** |
+ | |||
+ | It follows from the postulates of [[models:special_relativity|special relativity]] that | ||
$d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference: | $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference: | ||
- | \begin{equation} ds'^2 = dx'_\mu dx'_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} .\end{equation} | + | \begin{equation} ds'^2 = dx'_\mu dx'_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} \, ,\end{equation} |
+ | where $\eta^{\mu\nu}$ is the [[advanced_tools:minkowski_metric|Minkowski metric]]. | ||
We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'$: | We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'$: | ||
Line 29: | Line 32: | ||
\begin{equation} \label{eq:lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation} | \begin{equation} \label{eq:lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation} | ||
- | This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. | + | This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. Formulated differently, the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged. |
+ | |||
+ | ---- | ||
+ | |||
+ | **Explicit form of the Lorentz transformations** | ||
+ | |||
+ | __Rotations__ | ||
+ | First, we note that the rotation matrices of 3-dimensional Euclidean space that only act on space and not on time, fulfil the defining condition. This follows because the spatial part ($\mu=1,2,3$) of the Minkowski metric is proportional to the $3 \times 3$ identity matrix. Thus for transformations that only modify space, we get from the condition $\eta = \Lambda^T \eta \Lambda$ that | ||
+ | |||
+ | \[-R^T I_{3 \times 3} R =- R^T R \stackrel{!}{=} - I_{3 \times 3} | ||
+ | \] | ||
+ | \[\rightarrow R^T I_{3 \times 3} R =R^T R \stackrel{!}{=} I_{3 \times 3} . | ||
+ | \] | ||
+ | This is exactly the defining condition of the group $O(3)$. Together with the condition | ||
+ | \[ \det(\Lambda) \stackrel{!}{=} 1 | ||
+ | \] | ||
+ | these are the defining conditions of the group $SO(3)$, which describes three-dimensional rotations. We conclude that one type of Lorentz transformation is given by | ||
+ | \[ \Lambda_{\mathrm{rot }}= \begin{pmatrix} 1 & \\ & R_{3 \times 3} \end{pmatrix} | ||
+ | \] | ||
+ | with the usual rotation matrices $R_{3 \times 3}$: | ||
+ | |||
+ | \begin{eqnarray} | ||
+ | & & R_x(\phi) = | ||
+ | \begin{pmatrix} | ||
+ | 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi | ||
+ | \end{pmatrix} \label{eq:rotx} \\ | ||
+ | & & R_y(\psi) = | ||
+ | \begin{pmatrix} | ||
+ | \cos \psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi | ||
+ | \end{pmatrix} \label{eq:roty} \\ | ||
+ | & & R_z(\theta) = | ||
+ | \begin{pmatrix} | ||
+ | \cos \theta & \sin \theta & 0 \\-\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 | ||
+ | \end{pmatrix} \label{eq:rotz} | ||
+ | \end{eqnarray} | ||
+ | |||
+ | __Boosts__ | ||
+ | |||
+ | To investigate all other transformations which transform time //and// space we start, as usual in Lie theory, with an infinitesimal transformation | ||
+ | \begin{equation} \Lambda^{\mu}_{\rho} \approx \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho}. \end{equation} | ||
+ | We put this now into the defining condition $\eta = \Lambda^T \eta \Lambda$ and get | ||
+ | \[\Lambda^{\mu}_{\rho} \eta_{\mu \nu} \Lambda^{\nu}_{\sigma} \stackrel{!}{=} \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \[ \rightarrow ( \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho} ) \eta_{\mu \nu} (\delta^{\nu}_{\sigma}+ \epsilon K^{\nu}_{\sigma}) \stackrel{!}{=} \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \[ \rightarrow \eta_{\rho \sigma} + \epsilon K^{\mu}_{\rho}\eta_{\mu \sigma} + \epsilon K^{\nu}_{\sigma} \eta_{\rho \nu} + \underbrace{\epsilon^2 K^{\mu}_{\rho}\eta_{\mu \nu} K^{\nu}_{\sigma}}_{ \approx 0 \text{ because } \epsilon \text{ is infinitesimal }\rightarrow \epsilon^2 \approx 0} = \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \begin{equation}\rightarrow K^{\mu}_{\rho}\eta_{\mu \sigma} + K^{\nu}_{\sigma} \eta_{\rho \nu} = 0 \end{equation} | ||
+ | |||
+ | or in matrix notation | ||
+ | |||
+ | \begin{equation} \label{eq:boost4d} K^T \eta = - \eta K. \end{equation} | ||
+ | |||
+ | A transformation that fulfill this equation is called a boost. A boost takes us from one frame to another frame that moves with a different velocity. Explcitly, such transformations can be described by | ||
+ | |||
+ | \begin{equation} \Lambda_x = \begin{pmatrix} | ||
+ | \cosh(\phi)&i\sinh(\phi) & 0 & 0\\ i\sinh(\phi)& \cosh(\phi) &0 &0 \\ | ||
+ | 0&0&1&0 \\ 0&0&0&1 | ||
+ | \end{pmatrix} \end{equation} | ||
+ | |||
+ | \begin{equation} \Lambda_y = \begin{pmatrix} | ||
+ | \cosh(\phi)& 0 & i\sinh(\phi) & 0\\ 0 & 1 &0 &0 \\ | ||
+ | i\sinh(\phi)& 0 & \cosh(\phi) &0 \\ 0&0&0&1 | ||
+ | \end{pmatrix} \end{equation} | ||
+ | |||
+ | \begin{equation} \label{eq:boostexplicitz-direction} \Lambda_z = \begin{pmatrix} | ||
+ | \cosh(\phi)&0 & 0 & i\sinh(\phi)\\ 0 &1 &0 &0 \\ | ||
+ | 0&0&1&0 \\ i\sinh(\phi)& 0 &0 &\cosh(\phi) | ||
+ | \end{pmatrix}. \end{equation} | ||
<tabbox Abstract> | <tabbox Abstract> | ||
Line 125: | Line 196: | ||
See also, section 5.5 at page 79 in http://www.math.columbia.edu/~woit/QM/qmbook.pdf | See also, section 5.5 at page 79 in http://www.math.columbia.edu/~woit/QM/qmbook.pdf | ||
</WRAP> | </WRAP> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | **Graphical Summary** | ||
+ | |||
+ | The picture below shows the weight diagrams of some important irreducible representations of the (double cover of the) Lorentz group (right) and, for comparison, some irreducible representations of $SU(2)$ (left). For a more detailed explanation of this picture see [[https://esackinger.wordpress.com/appendices/#relativity|Fun with Symmetry]]. | ||
+ | |||
+ | [{{ :advanced_tools:group_theory:representation_theory:lorentz_irreps.jpg?nolink }}] | ||
+ | |||
+ | The following diagram illustrates the relationship between the groups of rotation $O(3)$ and $O(4)$, in 3D and 4D Euclidean space, respectively, and the Lorentz group $O(1,3)$. For a more detailed explanation of this diagram see [[https://esackinger.wordpress.com/appendices/#relativity|Fun with Symmetry]]. | ||
+ | |||
+ | [{{ :advanced_tools:group_theory:representation_theory:rotation_to_lorentz.jpg?nolink }}] | ||
+ | |||
+ | |||
<tabbox Why is it interesting?> | <tabbox Why is it interesting?> | ||