Both sides previous revision Previous revision Next revision | Previous revision | ||
advanced_tools:group_theory:lorentz_group [2017/12/17 17:27] jakobadmin |
advanced_tools:group_theory:lorentz_group [2025/03/04 01:00] (current) edi [Abstract] |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Representations of the Lorentz group ====== | + | <WRAP lag> $SO(3,1)$</WRAP> |
+ | ====== Lorentz Group ====== | ||
- | <tabbox Why is it interesting?> | ||
- | Understanding the representations is crucial for the standard model, because these representations are the tools that we need to describe [[advanced_notions:elementary_particles|elementary particles]]. | ||
- | <tabbox Layman> | + | <tabbox Intuitive> |
- | <note tip> | + | For a perfect intuitive introduction to the Lorentz group, see [[https://www.youtube.com/watch?v=Rh0pYtQG5wI|this video by minutephyiscs]]. |
- | Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. | + | |
- | </note> | + | |
| | ||
- | <tabbox Student> | + | <tabbox Concrete> |
+ | **Definition of the Lorentz transformations** | ||
+ | |||
+ | It follows from the postulates of [[models:special_relativity|special relativity]] that | ||
+ | $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference: | ||
+ | \begin{equation} ds'^2 = dx'_\mu dx'_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} \, ,\end{equation} | ||
+ | where $\eta^{\mu\nu}$ is the [[advanced_tools:minkowski_metric|Minkowski metric]]. | ||
+ | |||
+ | We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'$: | ||
+ | |||
+ | \begin{equation} \label{eq:lorentztrafo1} dx_\mu \rightarrow dx'_\mu=\Lambda^{ \ \sigma}_{\mu} dx_\sigma. \end{equation} | ||
+ | Then we can write the invariance condition from above as: | ||
+ | \begin{align} | ||
+ | (ds)^2 &= (ds')^2 \notag \\ | ||
+ | \rightarrow dx \cdot dx &\stackrel{!}{=} dx' \cdot dx' \notag \\ | ||
+ | \rightarrow dx_\mu dx_\nu \eta^{\mu\nu} &\stackrel{!}{=} dx'_\mu dx'_\nu \eta^{\mu\nu} \underbrace{=} \Lambda^{ \ \sigma}_{ \mu} dx_\sigma \Lambda^{ \ \gamma}_{ \nu} dx_\gamma \eta^{\mu\nu} \notag \\ | ||
+ | \underbrace{\rightarrow} dx_\mu dx_\nu \eta^{\mu\nu} &\stackrel{!}{=} \Lambda^{ \ \mu}_{ \sigma} dx_\mu \Lambda^{ \ \nu}_{ \gamma} dx_\nu \eta^{\sigma\gamma} \notag \\ | ||
+ | \underbrace{\rightarrow}_{\text{Because the equation holds for arbitrary } dx_\mu} \eta^{\mu\nu} &\stackrel{!}{=} \Lambda^{ \ \mu}_{ \sigma} \eta^{\sigma \gamma} \Lambda^{ \ \nu}_{ \gamma} | ||
+ | \end{align} | ||
+ | |||
+ | Or written in matrix notation | ||
+ | |||
+ | \begin{equation} \label{eq:lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation} | ||
+ | |||
+ | This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. Formulated differently, the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged. | ||
+ | |||
+ | ---- | ||
+ | |||
+ | **Explicit form of the Lorentz transformations** | ||
+ | |||
+ | __Rotations__ | ||
+ | First, we note that the rotation matrices of 3-dimensional Euclidean space that only act on space and not on time, fulfil the defining condition. This follows because the spatial part ($\mu=1,2,3$) of the Minkowski metric is proportional to the $3 \times 3$ identity matrix. Thus for transformations that only modify space, we get from the condition $\eta = \Lambda^T \eta \Lambda$ that | ||
+ | |||
+ | \[-R^T I_{3 \times 3} R =- R^T R \stackrel{!}{=} - I_{3 \times 3} | ||
+ | \] | ||
+ | \[\rightarrow R^T I_{3 \times 3} R =R^T R \stackrel{!}{=} I_{3 \times 3} . | ||
+ | \] | ||
+ | This is exactly the defining condition of the group $O(3)$. Together with the condition | ||
+ | \[ \det(\Lambda) \stackrel{!}{=} 1 | ||
+ | \] | ||
+ | these are the defining conditions of the group $SO(3)$, which describes three-dimensional rotations. We conclude that one type of Lorentz transformation is given by | ||
+ | \[ \Lambda_{\mathrm{rot }}= \begin{pmatrix} 1 & \\ & R_{3 \times 3} \end{pmatrix} | ||
+ | \] | ||
+ | with the usual rotation matrices $R_{3 \times 3}$: | ||
+ | |||
+ | \begin{eqnarray} | ||
+ | & & R_x(\phi) = | ||
+ | \begin{pmatrix} | ||
+ | 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi | ||
+ | \end{pmatrix} \label{eq:rotx} \\ | ||
+ | & & R_y(\psi) = | ||
+ | \begin{pmatrix} | ||
+ | \cos \psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi | ||
+ | \end{pmatrix} \label{eq:roty} \\ | ||
+ | & & R_z(\theta) = | ||
+ | \begin{pmatrix} | ||
+ | \cos \theta & \sin \theta & 0 \\-\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 | ||
+ | \end{pmatrix} \label{eq:rotz} | ||
+ | \end{eqnarray} | ||
+ | |||
+ | __Boosts__ | ||
+ | |||
+ | To investigate all other transformations which transform time //and// space we start, as usual in Lie theory, with an infinitesimal transformation | ||
+ | \begin{equation} \Lambda^{\mu}_{\rho} \approx \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho}. \end{equation} | ||
+ | We put this now into the defining condition $\eta = \Lambda^T \eta \Lambda$ and get | ||
+ | \[\Lambda^{\mu}_{\rho} \eta_{\mu \nu} \Lambda^{\nu}_{\sigma} \stackrel{!}{=} \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \[ \rightarrow ( \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho} ) \eta_{\mu \nu} (\delta^{\nu}_{\sigma}+ \epsilon K^{\nu}_{\sigma}) \stackrel{!}{=} \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \[ \rightarrow \eta_{\rho \sigma} + \epsilon K^{\mu}_{\rho}\eta_{\mu \sigma} + \epsilon K^{\nu}_{\sigma} \eta_{\rho \nu} + \underbrace{\epsilon^2 K^{\mu}_{\rho}\eta_{\mu \nu} K^{\nu}_{\sigma}}_{ \approx 0 \text{ because } \epsilon \text{ is infinitesimal }\rightarrow \epsilon^2 \approx 0} = \eta_{\rho \sigma} | ||
+ | \] | ||
+ | \begin{equation}\rightarrow K^{\mu}_{\rho}\eta_{\mu \sigma} + K^{\nu}_{\sigma} \eta_{\rho \nu} = 0 \end{equation} | ||
+ | |||
+ | or in matrix notation | ||
+ | |||
+ | \begin{equation} \label{eq:boost4d} K^T \eta = - \eta K. \end{equation} | ||
+ | |||
+ | A transformation that fulfill this equation is called a boost. A boost takes us from one frame to another frame that moves with a different velocity. Explcitly, such transformations can be described by | ||
+ | |||
+ | \begin{equation} \Lambda_x = \begin{pmatrix} | ||
+ | \cosh(\phi)&i\sinh(\phi) & 0 & 0\\ i\sinh(\phi)& \cosh(\phi) &0 &0 \\ | ||
+ | 0&0&1&0 \\ 0&0&0&1 | ||
+ | \end{pmatrix} \end{equation} | ||
+ | |||
+ | \begin{equation} \Lambda_y = \begin{pmatrix} | ||
+ | \cosh(\phi)& 0 & i\sinh(\phi) & 0\\ 0 & 1 &0 &0 \\ | ||
+ | i\sinh(\phi)& 0 & \cosh(\phi) &0 \\ 0&0&0&1 | ||
+ | \end{pmatrix} \end{equation} | ||
+ | |||
+ | \begin{equation} \label{eq:boostexplicitz-direction} \Lambda_z = \begin{pmatrix} | ||
+ | \cosh(\phi)&0 & 0 & i\sinh(\phi)\\ 0 &1 &0 &0 \\ | ||
+ | 0&0&1&0 \\ i\sinh(\phi)& 0 &0 &\cosh(\phi) | ||
+ | \end{pmatrix}. \end{equation} | ||
+ | <tabbox Abstract> | ||
+ | |||
+ | **Representations of the Lorentz group** | ||
At the heart of the representation theory of the Poincare group is the representation theory of the proper orthochronous Lorentz group $SO(1,3)^{\uparrow}$. We can concentrate on this subset of the Lorentz group, because the Lorentz group can be decomposed as follows: | At the heart of the representation theory of the Poincare group is the representation theory of the proper orthochronous Lorentz group $SO(1,3)^{\uparrow}$. We can concentrate on this subset of the Lorentz group, because the Lorentz group can be decomposed as follows: | ||
Line 105: | Line 197: | ||
</WRAP> | </WRAP> | ||
- | + | ---- | |
- | <tabbox Researcher> | + | |
- | <note tip> | + | **Graphical Summary** |
- | The motto in this section is: //the higher the level of abstraction, the better//. | + | |
- | </note> | + | |
- | + | The picture below shows the weight diagrams of some important irreducible representations of the (double cover of the) Lorentz group (right) and, for comparison, some irreducible representations of $SU(2)$ (left). For a more detailed explanation of this picture see [[https://esackinger.wordpress.com/appendices/#relativity|Fun with Symmetry]]. | |
- | <tabbox Examples> | + | |
- | --> Example1# | + | [{{ :advanced_tools:group_theory:representation_theory:lorentz_irreps.jpg?nolink }}] |
- | + | The following diagram illustrates the relationship between the groups of rotation $O(3)$ and $O(4)$, in 3D and 4D Euclidean space, respectively, and the Lorentz group $O(1,3)$. For a more detailed explanation of this diagram see [[https://esackinger.wordpress.com/appendices/#relativity|Fun with Symmetry]]. | |
- | <-- | + | |
- | --> Example2:# | + | [{{ :advanced_tools:group_theory:representation_theory:rotation_to_lorentz.jpg?nolink }}] |
- | |||
- | <-- | ||
- | <tabbox FAQ> | + | <tabbox Why is it interesting?> |
- | + | ||
- | <tabbox History> | + | |
+ | The Lorentz group is an important part of the fundamental spacetime symmetry group of the standard model, called the [[advanced_tools:group_theory:poincare_group|Poincare group]]. | ||
+ | |||
+ | It encodes the fact that physics should be the same in all frames of reference and additionally that the speed of light is the same in all such frames. | ||
+ | |||
+ | Understanding the representations is crucial for the standard model, because these representations are the tools that we need to describe [[advanced_notions:elementary_particles|elementary particles]]. | ||
+ | | ||
</tabbox> | </tabbox> | ||