User Tools

Site Tools


advanced_tools:group_theory:lorentz_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
advanced_tools:group_theory:lorentz_group [2018/04/06 15:45]
jakobadmin [Concrete]
advanced_tools:group_theory:lorentz_group [2018/04/06 16:01]
jakobadmin [Concrete]
Line 9: Line 9:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +**Definition of the Lorentz transformations**
 +
 It follows from the postulates of [[theories:​special_relativity|special relativity]] that It follows from the postulates of [[theories:​special_relativity|special relativity]] that
 $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference: $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference:
 \begin{equation} ds'^2 = dx'​_\mu dx'​_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} \, ,​\end{equation} \begin{equation} ds'^2 = dx'​_\mu dx'​_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} \, ,​\end{equation}
-where $$ is the Minkowski metric. ​+where $\eta^{\mu\nu}$ is the [[advanced_tools:​minkowski_metric|Minkowski metric]]
  
 We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'​$:​ We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'​$:​
Line 32: Line 34:
 This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. Formulated differently,​ the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged. ​ This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. Formulated differently,​ the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged. ​
  
 +----
 +
 +**Explicit form of the Lorentz transformations**
 +
 +__Rotations__
 +First, we note that the rotation matrices of 3-dimensional Euclidean space that only act on space and not on time, fulfil the defining condition. This follows because the spatial part ($\mu=1,​2,​3$) of the Minkowski metric is proportional to the $3 \times 3$ identity matrix. Thus for transformations that only modify space, we get from the condition $\eta = \Lambda^T \eta \Lambda$ that
 +
 +\[-R^T I_{3 \times 3} R =- R^T R \stackrel{!}{=} -  I_{3 \times 3} 
 +\]
 +\[\rightarrow R^T I_{3 \times 3} R =R^T R \stackrel{!}{=} ​  I_{3 \times 3} .
 +\]
 +This is exactly the defining condition of the group $O(3)$. Together with the condition
 +\[ \det(\Lambda) \stackrel{!}{=} 1
 +\]
 +these are the defining conditions of the group $SO(3)$, which describes three-dimensional rotations. We conclude that one type of Lorentz transformation is given by
 +\[ \Lambda_{\mathrm{rot }}= \begin{pmatrix} 1 &  \\ & R_{3 \times 3} \end{pmatrix}
 +\]
 +with the usual rotation matrices ​ $R_{3 \times 3}$:
 +
 +\begin{eqnarray}
 +& & R_x(\phi) = 
 +\begin{pmatrix}
 +1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi
 +\end{pmatrix} \label{eq:​rotx} \\
 +& & R_y(\psi) = 
 +\begin{pmatrix}
 +\cos \psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi
 +\end{pmatrix} \label{eq:​roty} \\
 +& & R_z(\theta) = 
 +\begin{pmatrix}
 +\cos \theta & \sin \theta & 0 \\-\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1
 +\end{pmatrix} \label{eq:​rotz}
 +\end{eqnarray}
 +
 +__Boosts__
 +
 +To investigate all other transformations which transform time //and// space we start, as usual in Lie theory, with an infinitesimal transformation
 +\begin{equation} ​ \Lambda^{\mu}_{\rho} \approx \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho}. \end{equation}
 +We put this now into the defining condition $\eta = \Lambda^T \eta \Lambda$ and get
 +\[\Lambda^{\mu}_{\rho} \eta_{\mu \nu} \Lambda^{\nu}_{\sigma} ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma}
 +\]
 +\[ \rightarrow ( \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho} ) \eta_{\mu \nu} (\delta^{\nu}_{\sigma}+ \epsilon K^{\nu}_{\sigma}) ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma}  ​
 +\]
 +\[ \rightarrow \eta_{\rho \sigma} + \epsilon K^{\mu}_{\rho}\eta_{\mu \sigma} + \epsilon K^{\nu}_{\sigma} \eta_{\rho \nu} + \underbrace{\epsilon^2 ​  ​K^{\mu}_{\rho}\eta_{\mu \nu}  K^{\nu}_{\sigma}}_{ \approx 0 \text{ because } \epsilon \text{ is infinitesimal }\rightarrow \epsilon^2 \approx 0} = \eta_{\rho \sigma}
 +\]
 +\begin{equation}\rightarrow ​ K^{\mu}_{\rho}\eta_{\mu \sigma} +  K^{\nu}_{\sigma} \eta_{\rho \nu} = 0     ​\end{equation}
 +
 +or in matrix notation
 +
 +\begin{equation} \label{eq:​boost4d} K^T \eta = - \eta K. \end{equation}
 +
 +A transformation that fulfill this equation is called a boost. A boost takes us from one frame to another frame that moves with a different velocity. Explcitly, such transformations can be described by
 +
 +\begin{equation} \Lambda_x =  \begin{pmatrix}
 +  \cosh(\phi)&​i\sinh(\phi) ​ & 0 & 0\\ i\sinh(\phi)&​ \cosh(\phi) &0 &0 \\
 +  0&​0&​1&​0 \\ 0&​0&​0&​1
 + ​\end{pmatrix} ​ \end{equation}
  
 +\begin{equation} \Lambda_y =  \begin{pmatrix}
 +  \cosh(\phi)&​ 0 & i\sinh(\phi) & 0\\ 0 & 1 &0 &​0 ​  \\
 +  i\sinh(\phi)&​ 0 &  \cosh(\phi) &​0 ​ \\ 0&​0&​0&​1
 + ​\end{pmatrix} ​ \end{equation}
 + 
 +\begin{equation} \label{eq:​boostexplicitz-direction} \Lambda_z =  \begin{pmatrix}
 +  \cosh(\phi)&​0 ​ & 0 & i\sinh(\phi)\\ 0 &1 &0 &0 \\
 +  0&​0&​1&​0 \\ i\sinh(\phi)&​ 0 &0 &​\cosh(\phi)
 + ​\end{pmatrix}. ​ \end{equation}
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
advanced_tools/group_theory/lorentz_group.txt · Last modified: 2023/05/20 19:32 by edi