User Tools

Site Tools


advanced_tools:group_theory:lorentz_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
advanced_tools:group_theory:lorentz_group [2017/12/17 17:27]
jakobadmin
advanced_tools:group_theory:lorentz_group [2022/09/24 02:17]
edi [Abstract]
Line 1: Line 1:
-====== ​Representations of the Lorentz ​group ======+<WRAP lag> ​ $SO(3,​1)$</​WRAP>​ 
 +====== Lorentz ​Group ======
  
-<tabbox Why is it interesting?> ​ 
  
-Understanding the representations is crucial for the standard model, because these representations are the tools that we need to describe [[advanced_notions:​elementary_particles|elementary particles]]. ​ 
  
-<​tabbox ​Layman+<​tabbox ​Intuitive
  
-<note tip> +For perfect intuitive introduction to the Lorentz group, see [[https://​www.youtube.com/watch?​v=Rh0pYtQG5wI|this video by minutephyiscs]].
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at a cocktail party. +
-</note>+
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete 
 +**Definition of the Lorentz transformations** 
 + 
 +It follows from the postulates of [[models:​special_relativity|special relativity]] that 
 +$d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference:​ 
 +\begin{equation} ds'^2 = dx'​_\mu dx'​_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} \, ,​\end{equation} 
 +where $\eta^{\mu\nu}$ is the [[advanced_tools:​minkowski_metric|Minkowski metric]].  
 + 
 +We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'​$:​ 
 + 
 +\begin{equation} \label{eq:​lorentztrafo1} ​ dx_\mu \rightarrow dx'​_\mu=\Lambda^{ \  \sigma}_{\mu} dx_\sigma. \end{equation} 
 +Then we can write the invariance condition from above as: 
 +\begin{align} 
 +  (ds)^2 &= (ds'​)^2 ​ \notag \\ 
 +  \rightarrow ​  dx \cdot dx &​\stackrel{!}{=} dx' \cdot dx' ​ \notag \\ 
 +   ​\rightarrow ​ dx_\mu dx_\nu \eta^{\mu\nu} &​\stackrel{!}{=} dx'​_\mu dx'​_\nu \eta^{\mu\nu} \underbrace{=} \Lambda^{ \ \sigma}_{ \mu} dx_\sigma \Lambda^{ \ \gamma}_{ \nu} dx_\gamma \eta^{\mu\nu} \notag \\ 
 +  \underbrace{\rightarrow} dx_\mu dx_\nu \eta^{\mu\nu} &​\stackrel{!}{=} \Lambda^{ \ \mu}_{ \sigma} dx_\mu \Lambda^{ \ \nu}_{ \gamma} dx_\nu \eta^{\sigma\gamma} \notag \\ 
 +  \underbrace{\rightarrow}_{\text{Because the equation holds for  arbitrary } dx_\mu} \eta^{\mu\nu} ​ &​\stackrel{!}{=} ​ \Lambda^{ \ \mu}_{ \sigma} \eta^{\sigma \gamma} ​  ​\Lambda^{ \ \nu}_{ \gamma} 
 +\end{align} 
 + 
 +Or written in matrix notation 
 + 
 +\begin{equation} \label{eq:​lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation} 
 + 
 +This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. Formulated differently,​ the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged.  
 + 
 +---- 
 + 
 +**Explicit form of the Lorentz transformations** 
 + 
 +__Rotations__ 
 +First, we note that the rotation matrices of 3-dimensional Euclidean space that only act on space and not on time, fulfil the defining condition. This follows because the spatial part ($\mu=1,​2,​3$) of the Minkowski metric is proportional to the $3 \times 3$ identity matrix. Thus for transformations that only modify space, we get from the condition $\eta = \Lambda^T \eta \Lambda$ that 
 + 
 +\[-R^T I_{3 \times 3} R =- R^T R \stackrel{!}{=} -  I_{3 \times 3}  
 +\] 
 +\[\rightarrow R^T I_{3 \times 3} R =R^T R \stackrel{!}{=} ​  I_{3 \times 3} . 
 +\] 
 +This is exactly the defining condition of the group $O(3)$. Together with the condition 
 +\[ \det(\Lambda) \stackrel{!}{=} 1 
 +\] 
 +these are the defining conditions of the group $SO(3)$, which describes three-dimensional rotations. We conclude that one type of Lorentz transformation is given by 
 +\[ \Lambda_{\mathrm{rot }}= \begin{pmatrix} 1 &  \\ & R_{3 \times 3} \end{pmatrix} 
 +\] 
 +with the usual rotation matrices ​ $R_{3 \times 3}$: 
 + 
 +\begin{eqnarray} 
 +& & R_x(\phi) =  
 +\begin{pmatrix} 
 +1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi 
 +\end{pmatrix} \label{eq:​rotx} \\ 
 +& & R_y(\psi) =  
 +\begin{pmatrix} 
 +\cos \psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi 
 +\end{pmatrix} \label{eq:​roty} \\ 
 +& & R_z(\theta) =  
 +\begin{pmatrix} 
 +\cos \theta & \sin \theta & 0 \\-\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 
 +\end{pmatrix} \label{eq:​rotz} 
 +\end{eqnarray} 
 + 
 +__Boosts__ 
 + 
 +To investigate all other transformations which transform time //and// space we start, as usual in Lie theory, with an infinitesimal transformation 
 +\begin{equation} ​ \Lambda^{\mu}_{\rho} \approx \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho}. \end{equation} 
 +We put this now into the defining condition $\eta = \Lambda^T \eta \Lambda$ and get 
 +\[\Lambda^{\mu}_{\rho} \eta_{\mu \nu} \Lambda^{\nu}_{\sigma} ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma} 
 +\] 
 +\[ \rightarrow ( \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho} ) \eta_{\mu \nu} (\delta^{\nu}_{\sigma}+ \epsilon K^{\nu}_{\sigma}) ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma} ​  
 +\] 
 +\[ \rightarrow \eta_{\rho \sigma} + \epsilon K^{\mu}_{\rho}\eta_{\mu \sigma} + \epsilon K^{\nu}_{\sigma} \eta_{\rho \nu} + \underbrace{\epsilon^2 ​  ​K^{\mu}_{\rho}\eta_{\mu \nu}  K^{\nu}_{\sigma}}_{ \approx 0 \text{ because } \epsilon \text{ is infinitesimal }\rightarrow \epsilon^2 \approx 0} = \eta_{\rho \sigma} 
 +\] 
 +\begin{equation}\rightarrow ​ K^{\mu}_{\rho}\eta_{\mu \sigma} +  K^{\nu}_{\sigma} \eta_{\rho \nu} = 0     ​\end{equation} 
 + 
 +or in matrix notation 
 + 
 +\begin{equation} \label{eq:​boost4d} K^T \eta = - \eta K. \end{equation} 
 + 
 +A transformation that fulfill this equation is called a boost. A boost takes us from one frame to another frame that moves with a different velocity. Explcitly, such transformations can be described by 
 + 
 +\begin{equation} \Lambda_x =  \begin{pmatrix} 
 +  \cosh(\phi)&​i\sinh(\phi) ​ & 0 & 0\\ i\sinh(\phi)&​ \cosh(\phi) &0 &0 \\ 
 +  0&​0&​1&​0 \\ 0&​0&​0&​1 
 + ​\end{pmatrix} ​ \end{equation} 
 + 
 +\begin{equation} \Lambda_y =  \begin{pmatrix} 
 +  \cosh(\phi)&​ 0 & i\sinh(\phi) & 0\\ 0 & 1 &0 &​0 ​  \\ 
 +  i\sinh(\phi)&​ 0 &  \cosh(\phi) &​0 ​ \\ 0&​0&​0&​1 
 + ​\end{pmatrix} ​ \end{equation} 
 +  
 +\begin{equation} \label{eq:​boostexplicitz-direction} \Lambda_z =  \begin{pmatrix} 
 +  \cosh(\phi)&​0 ​ & 0 & i\sinh(\phi)\\ 0 &1 &0 &0 \\ 
 +  0&​0&​1&​0 \\ i\sinh(\phi)&​ 0 &0 &​\cosh(\phi) 
 + ​\end{pmatrix}. ​ \end{equation} 
 +<tabbox Abstract>​  
 + 
 +**Representations of the Lorentz group**
  
 At the heart of the representation theory of the Poincare group is the representation theory of the proper orthochronous Lorentz group $SO(1,​3)^{\uparrow}$. We can concentrate on this subset of the Lorentz group, because the Lorentz group can be decomposed as follows: At the heart of the representation theory of the Poincare group is the representation theory of the proper orthochronous Lorentz group $SO(1,​3)^{\uparrow}$. We can concentrate on this subset of the Lorentz group, because the Lorentz group can be decomposed as follows:
Line 105: Line 197:
  </​WRAP>​  </​WRAP>​
  
-  +----
-<tabbox Researcher> ​+
  
-<note tip> +**Graphical Summary**
-The motto in this section is: //the higher the level of abstraction,​ the better//. +
-</​note>​+
  
-   +The picture below shows the weight diagrams of some important irreducible representations of the (double cover of the) Lorentz group (right) and, for comparison, some irreducible representations of $SU(2)$ (left). For a more detailed explanation of this picture see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]].
-<tabbox Examples> ​+
  
---> Example1#+[{{ :​advanced_tools:​group_theory:​representation_theory:​lorentz_irreps.jpg?​nolink }}]
  
-  +The following diagram illustrates the relationship between the groups of rotation $O(3)$ and $O(4)$, in 3D and 4D Euclidean space, respectively,​ and the Lorentz group $O(1,3)$. For a more detailed explanation of this diagram see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]].
-<--+
  
---> Example2:#+[{{ :advanced_tools:​group_theory:​representation_theory:​rotation_to_lorentz.jpg?​nolink }}]
  
-  
-<-- 
  
-<​tabbox ​FAQ>  +<​tabbox ​Why is it interesting?​
-   +
-<tabbox History+
  
 +The Lorentz group is an important part of the fundamental spacetime symmetry group of the standard model, called the [[advanced_tools:​group_theory:​poincare_group|Poincare group]]. ​
 +
 +It encodes the fact that physics should be the same in all frames of reference and additionally that the speed of light is the same in all such frames. ​
 +
 +Understanding the representations is crucial for the standard model, because these representations are the tools that we need to describe [[advanced_notions:​elementary_particles|elementary particles]]. ​
 +  ​
 </​tabbox>​ </​tabbox>​
  
  
advanced_tools/group_theory/lorentz_group.txt · Last modified: 2023/05/20 19:32 by edi