User Tools

Site Tools


theories:classical_field_theory

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
theories:classical_field_theory [2018/03/30 10:15]
jakobadmin [Concrete]
theories:classical_field_theory [2018/04/15 12:36]
ida [Concrete]
Line 23: Line 23:
 A classical field is a dynamical system with an **infinite number** of degrees of freedom. We describe fields mathematically by partial differential equations.  ​ A classical field is a dynamical system with an **infinite number** of degrees of freedom. We describe fields mathematically by partial differential equations.  ​
  
 +----
 +
 +The action functional $S[\phi(x)]$ for a free real scalar field of mass $m$ is
 +\begin{eqnarray}
 +S[\phi(x)]\equiv \int d^{4}x \,​\mathcal{L}(\phi,​\partial_{\mu}\phi)=
 +{1\over 2}\int d^{4}x \,​\left(\partial_{\mu}\phi\partial^{\mu}\phi-
 +{m^{2}}\phi^2\right).
 +\end{eqnarray}
 +We can calculate the equations of motion are obtained by using [[equations:​euler_lagrange_equations|the Euler-Lagrange
 +equations]]
 +\begin{eqnarray}
 +\partial_{\mu}\left[\partial\mathcal{L}\over \partial(\partial_{\mu}\phi)
 +\right]-{\partial\mathcal{L}\over \partial\phi}=0 \quad
 +\Longrightarrow \quad (\partial_{\mu}\partial^{\mu}+m^{2})\phi=0.
 +\label{eq:​eomKG}
 +\end{eqnarray}
 +
 +The momentum canonically conjugated to the field $\phi(x)$ is given by
 +\begin{eqnarray}
 +\pi(x)\equiv {\partial\mathcal{L}\over \partial(\partial_{0}\phi)}
 +={\partial\phi\over\partial t}.
 +\end{eqnarray}
 +
 +The corresponding Hamiltonian function is
 +\begin{eqnarray}
 +H\equiv \int d^{3}x \left(\pi{\partial\phi\over\partial t}-\mathcal{L}\right) ​
 += {1\over 2}\int d^{3}x\left[
 +\pi^2+(\vec{\nabla}\phi)^{2}+m^{2}\right].
 +\end{eqnarray}
 +
 +In classical theories, we can write the equations of motionin terms of the [[advanced_notions:​poisson_bracket|Poisson
 +brackets]]:
 +\begin{eqnarray}
 +\{A,​B\}\equiv \int d^{3}x\left[{\delta {A}\over \delta \phi}
 +{\delta{B}\over \delta\pi}-
 +{\delta{A}\over \delta\pi}{\delta{B}\over \delta\phi}
 +\right],
 +\end{eqnarray}
 +where ${\delta\over \delta \phi}$ denotes the functional derivative ​
 +defined as
 +\begin{eqnarray}
 +{\delta A\over \delta\phi}\equiv {\partial\mathcal{A}\over ​
 +\partial\phi}-\partial_{\mu}\left[{\partial\mathcal{A}
 +\over \partial(\partial_{\mu}\phi)}\right]
 +\end{eqnarray}
 +The canonically conjugated classical fields satisfy the
 +following equal time Poisson brackets
 +\begin{eqnarray}
 +\{\phi(t,​\vec{x}),​\phi(t,​\vec{x}\,'​)\}&​=&​\{\pi(t,​\vec{x}),​
 +\pi(t,​\vec{x}\,'​)\}=0,​\nonumber \\
 +\{\phi(t,​\vec{x}),​\pi(t,​\vec{x}\,'​)\}&​=&​\delta(\vec{x}-\vec{x}\,'​).
 +\label{eq:​etccr}
 +\end{eqnarray}
  
 ---- ----
theories/classical_field_theory.txt · Last modified: 2018/04/15 12:36 by ida