User Tools

Site Tools


theorems:gauss_bonnet

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
theorems:gauss_bonnet [2017/12/04 07:01]
127.0.0.1 external edit
theorems:gauss_bonnet [2018/03/28 13:25] (current)
jakobadmin
Line 1: Line 1:
 ====== Gauss-Bonnet Theorem ====== ====== Gauss-Bonnet Theorem ======
  
-<tabbox Why is it interesting?>​  + 
-The Gauss-Bonnet theorem is a formula that yields a topological invariant, i.e. something that can be used to characterise e.g. manifolds. +<​tabbox ​Intuitive
-<​tabbox ​Layman+
  
 <note tip> <note tip>
Line 9: Line 8:
 </​note>​ </​note>​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
   * [[https://​www.physicsforums.com/​attachments/​preliminaries-moore-pdf.20344/​|A fantastic introduction that explains the Gauss-Bonnet theorem in intuitive terms is Geometry and topology in many-particle systems]] by Joel E. Moore   * [[https://​www.physicsforums.com/​attachments/​preliminaries-moore-pdf.20344/​|A fantastic introduction that explains the Gauss-Bonnet theorem in intuitive terms is Geometry and topology in many-particle systems]] by Joel E. Moore
    
-<​tabbox ​Researcher+<​tabbox ​Abstract
  
 <note tip> <note tip>
Line 20: Line 19:
  
   ​   ​
-<​tabbox ​Examples>  +<​tabbox ​Why is it interesting?​>  
- +The Gauss-Bonnet theorem is a formula that yields a topological invariant, i.e. something that can be used to characterise e.g. manifolds.
---> Example1# +
- +
-  +
-<-- +
- +
---> Example2:#​ +
- +
-  +
-<-- +
- +
-<tabbox FAQ>  +
-   +
-<tabbox History> ​+
  
 </​tabbox>​ </​tabbox>​
  
  
theorems/gauss_bonnet.txt · Last modified: 2018/03/28 13:25 by jakobadmin