User Tools

Site Tools


models:standard_model

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
models:standard_model [2018/03/30 14:34]
jakobadmin [Concrete]
models:standard_model [2019/02/03 08:46]
77.180.211.234 [History]
Line 3: Line 3:
 </​WRAP>​ </​WRAP>​
  
-====== ​The Standard Model ======+====== Standard Model of Particle Physics ​======
  
  
Line 18: Line 18:
 **Particle Content** **Particle Content**
  
-{{ :models:standardmodel.png?​nolink&​400 |}}+{{ :models:paper.journal.40.png?​nolink&​800 |}} 
 + 
  
 ---- ----
Line 29: Line 31:
  
 <tabbox Concrete> ​ <tabbox Concrete> ​
-The Standard Model contains 12 vector fields, +At the heart of the Standard Model is the [[advanced_tools:​gauge_symmetry|gauge symmetry]]
-45 Weyl fermion fields which describe 6 quarks and 6 leptons,  +
-and a complex doublet $H$ of scalar fields. +
- +
-The vector fields, denoted $A^a_\mu(x)$,​ are [[theories:​gauge_theory|gauge fields]] of the [[advanced_tools:​gauge_symmetry|local symmetry]]+
 $$ $$
-G\ =\ SU(3)_C\times SU(2)_W\times U(1)_Y\, ​,+G\ =\ SU(3)_C\times SU(2)_L\times U(1)_Y\, ​.
 $$ $$
-the $SU(3)_C$ mixes the three colors of the quarks and antiquarks,​ +The $SU(3)_C$ mixes the three colors of the quarks and antiquarks,​ 
-the $SU(2)_W$ the weak isospin, and the $U(1)_Y$+the $SU(2)_L$ the weak isospin, and the $U(1)_Y$
 couples to the weak hypercharge $Y$. couples to the weak hypercharge $Y$.
  
Line 45: Line 43:
  
 As a result, the $W^\pm$ and $Z^0$ vector particles become As a result, the $W^\pm$ and $Z^0$ vector particles become
-massive ($M_W\approx80.4$~GeV, $M_Z\approx91.2$~GeV) while the+massive ($M_W\approx80.4$ GeV, $M_Z\approx91.2$ GeV) while the
 photon $\gamma$ remains massless. photon $\gamma$ remains massless.
 +
 +
  
 ---- ----
 +
 +
 +--> Standard Model Lagrangian#
 +
 +
 +[{{ :​models:​smlagshort.png?​nolink&​800 |Source: http://​blogs.discovermagazine.com/​cosmicvariance/​2006/​11/​23/​thanksgiving/​ }}]
 +
 +  * A nice overview of the various terms in the __Standard Model Lagrangian__ can be found [[http://​www.einstein-schrodinger.com/​Standard_Model.pdf|here]]. A short non-technical discussion of the various terms can be found [[https://​www.symmetrymagazine.org/​article/​the-deconstructed-standard-model-equation|here]]. ​
 +
 +
 +<--
 +
 +-->​Particle Content#
 +
 +{{ :​models:​sm-overview.pdf |The field content of the standard model is nicely summarized here}}
 +
  
 **The Gauge Bosons** **The Gauge Bosons**
-The photon ​couples to the electric charge which is a linear combination of hypercharge and weak isospin+ 
 +The __photon__ ​couples to the electric charge which is a linear combination of hypercharge and weak isospin
 $$ $$
 q\ =\ T^3\ +\ Y . q\ =\ T^3\ +\ Y .
Line 58: Line 75:
 The photon is responsible for electromagnetic interactions. Since it is massless the electromagnetic forces are long-ranged. ​ The photon is responsible for electromagnetic interactions. Since it is massless the electromagnetic forces are long-ranged. ​
  
-The $W^\pm$ and $Z^0$ bosons ​are responsible for the weak interactions. Since both are massive the weak force is short-ranged.+The __$W^\pm$ and $Z^0$ bosons__ ​are responsible for the weak interactions. Since both are massive the weak force is short-ranged.
  
-The bosons responsible for the strong force are called ​gluons. This name stems from the fact that they ``glue''​ the quarks and antiquarks together. Bound states made of quarks and antiquarks are called baryons and mesons. ​ The strong forces become stronger with rising distance between two color-chared particles. As a result individual quarks, antiquarks, or gluons can't be isolated. This is known as confinement. Only $SU(3)_C$ singlets can be observed. ​+The bosons responsible for the strong force are called ​__gluons__. This name stems from the fact that they ``glue''​ the quarks and antiquarks together. Bound states made of quarks and antiquarks are called baryons and mesons. ​ The strong forces become stronger with rising distance between two color-chared particles. As a result individual quarks, antiquarks, or gluons can't be isolated. This is known as confinement. Only $SU(3)_C$ singlets can be observed. ​
  
 ---- ----
Line 69: Line 86:
 called `up', `down',​ `strange',​ `charm',​ `bottom',​ and `top'. called `up', `down',​ `strange',​ `charm',​ `bottom',​ and `top'.
  
-The left-handed quarks form 9 $SU(2)_W$ doublets: +The left-handed quarks form 9 $SU(2)_L$ doublets: 
-$$(u,d)_L$$(c,s)_L$$(t,b)_L$$+$$(u,d)_L, (c,s)_L, (t,b)_L$$
 (3 for each color) (3 for each color)
  
-The right-handed quarks are $SU(2)_W$ +The right-handed quarks are $SU(2)_L$ singlets.
-singlets.+
  
-This curious difference between left-handed and right-handed quarks ​meanst ​that weak interactions disrespect the parity symmetry. The bosons $W^\pm$ only couple to the left currents $J^\mu_L=V^\mu-A^\mu$+This curious difference between left-handed and right-handed quarks ​means that weak interactions disrespect the parity symmetry. The bosons $W^\pm$ only couple to the left currents $J^\mu_L=V^\mu-A^\mu$
 and don't care about the right currents $J^\mu_R=V^\mu+A^\mu$. and don't care about the right currents $J^\mu_R=V^\mu+A^\mu$.
  
 The same is true for the __leptons__ $e^-$, $\mu^-$, $\tau^-$, and the 3 neutrino species. The same is true for the __leptons__ $e^-$, $\mu^-$, $\tau^-$, and the 3 neutrino species.
  
-The left-handed leptons live in three $SU(2)_W$ doublets: +The left-handed leptons live in three $SU(2)_L$ doublets: 
-$$(\nu_e,​e^e)_L$$(\nu_\mu,​\mu^-)_L$$(\nu_\tau,​\tau^-)_L$$.+$$(\nu_e,​e^e)_L,​ (\nu_\mu,​\mu^-)_L,​ (\nu_\tau,​\tau^-)_L$$.
  
 The right-handed charged leptons $e^-_R$, $\mu^-_R$, $\tau^-_R$ The right-handed charged leptons $e^-_R$, $\mu^-_R$, $\tau^-_R$
-are $SU(2)_W$ singlets. So far right-handed neutrinos were never observed. +are $SU(2)_L$ singlets. So far right-handed neutrinos were never observed.
----- +
- +
- +
---> Standard Model Lagrangian#​ +
- +
- +
-[{{ :​models:​smlagshort.png?​nolink&​800 |Source: http://​blogs.discovermagazine.com/​cosmicvariance/​2006/​11/​23/​thanksgiving/​ }}] +
- +
-  * A nice overview of the various terms in the __Standard Model Lagrangian__ can be found [[http://​www.einstein-schrodinger.com/​Standard_Model.pdf|here]]. A short non-technical discussion of the various terms can be found [[https://​www.symmetrymagazine.org/​article/​the-deconstructed-standard-model-equation|here]].  +
  
 <-- <--
  
--->Particle Content# +-->Standard Model Interactions#
- +
-{{ :​models:​sm-overview.pdf |The field content of the standard model is nicely summarized here}}+
  
 +[{{ :​models:​586px-standard_model_feynman_diagram_vertices.png?​nolink |Source: Image by Garyzx published under the [[https://​creativecommons.org/​licenses/​by-sa/​3.0|CC BY-SA 3.0]] licence}}]
 <-- <--
 ---- ----
Line 254: Line 259:
 <-- <--
  
---> ​Questions ​left open by the standard model?#+--> ​What questions are left open by the standard model?#
  
 See [[:​open_problems|Open Problems]] See [[:​open_problems|Open Problems]]
  
    
 +<--
 +
 +--> What symmetries do exist in the standard model and what is their experimental status?#
 +see https://​physics.stackexchange.com/​questions/​97896/​symmetries-of-the-standard-model-exact-anomalous-spontaneously-broken
 <-- <--
 <tabbox History> ​ <tabbox History> ​
   * The Rise of the Standard Model: A History of Particle Physics from 1964 to 1979 by Lillian Hoddeson   * The Rise of the Standard Model: A History of Particle Physics from 1964 to 1979 by Lillian Hoddeson
   * Resource Letter: The Standard Model and Beyond by Jonathan L. Rosner   * Resource Letter: The Standard Model and Beyond by Jonathan L. Rosner
 +  * https://​inference-review.com/​article/​the-standard-model by Sheldon Glashow
 +
 </​tabbox>​ </​tabbox>​
  
  
models/standard_model.txt · Last modified: 2019/07/03 08:12 by jakobadmin