User Tools

Site Tools


formulas:maxwell_relations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:maxwell_relations [2017/11/05 16:08]
jakobadmin ↷ Page moved from theories:statistical_mechanics:maxwell_relations to equations:maxwell_relations
formulas:maxwell_relations [2018/05/13 09:17]
jakobadmin ↷ Page moved from equations:maxwell_relations to formulas:maxwell_relations
Line 1: Line 1:
 ====== Maxwell Relations ====== ====== Maxwell Relations ======
  
-<tabbox Why is it interesting?> ​ 
  
-<​tabbox ​Layman+ 
 +<​tabbox ​Intuitive
  
 <note tip> <note tip>
Line 9: Line 9:
 </​note>​ </​note>​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
-For a great explanation,​ why the Maxwell relations are "just a sneaky way of saying that the mixed partial derivatives of the function U commute"​. see https://​johncarlosbaez.wordpress.com/​2012/​01/​19/​classical-mechanics-versus-thermodynamics-part-1/​+**Derivation**
  
 +The Maxwell relations follow directly from the fact that [[https://​en.wikipedia.org/​wiki/​Symmetry_of_second_derivatives|partial derivatives commute]]: $\partial_x \partial_y = \partial_y ​ \partial_x$. ​
  
-(The fact that partial derivatives commute is known as Schwarz'​ theorem ​(see  https://​en.wikipedia.org/​wiki/​Maxwell_relations . Schwarz'​ theorem is simply a way of stating "the fact that a function ​doesn’t ​change ​when we go around a parallelogram"​ https://​johncarlosbaez.wordpress.com/​2012/​01/​23/​classical-mechanics-versus-thermodynamics-part-2/​) +If we have some function $U(S,V)$ (called ​the internal energy) ​that depends on the entropy $S$ and the volume $V$, the total change ​of it is given by
-<tabbox Researcher> ​+
  
-<note tip> +$$ dU = \frac{\partial U}{\partial S} \big |_V dS + \frac{\partial U}{\partial V} \big |_S dV $$
-The motto in this section is: //the higher the level of abstractionthe better//. +
-</​note>​+
  
---> Common Question 1#+where $\big |_V$ means that we keep $V$ fixed.
  
-  +Then, we introduce two definitions:​
-<--+
  
---> Common Question 2#+$$ \frac{\partial U}{\partial S} \big |_V \equiv ​ T , \quad -\frac{\partial U}{\partial V} \big |_S \equiv ​ P.$$
  
 +The minus sign here is just a convention and can be understood as follows: The internal energy usually gets smaller when we increase the volume. Thus, if we want to work with positive pressure $P$ in most situations, we need to include the minus sign here. 
    
-<-- +Using these definitions equation reads
-   +
-<tabbox Examples> ​+
  
---> Example1#+$$ dU = T dS P dV,  $$
  
-  +which is the [[https://​en.wikipedia.org/​wiki/​Fundamental_thermodynamic_relation|fundamental thermodynamic relation]].
-<--+
  
---> Example2:#+Next, we use that partial derivative commute:
  
-  +$$ \frac{\partial^2 U}{\partial V\partial S} = \frac{\partial^2 U}{\partial S\partial V} $$ 
-<-- + 
-   +and put in our two definitions from above: 
-<​tabbox ​History+ 
 +$$ \frac{\partial T}{\partial S} \big |_V = -\frac{\partial P}{\partial V}\big |_S $$ 
 + 
 +This is one of the Maxwell relations.  
 + 
 +The other Maxwell relations follow completely analogous, but with different functions instead of the internal energy $U$. 
 + 
 +For example, if we start with the Helmholtz free energy $A(T,V)$: 
 + 
 +$$ A = U -TS $$ 
 + 
 +and follow exactly the same steps ($dA= dU-d(TS) = (Tds-PdV)-(SdT+TdS)=-SdT-PdV$),​ we can derive 
 + 
 +$$ \frac{\partial S}{\partial V} \big |_T = \frac{\partial P}{\partial T} \big |_V $$ 
 + 
 +The other Maxwell relations follow by starting with the enthalpy $H(S,P)$ or the Gibbs free energy $G(T,P)$. 
 + 
 + 
 +(These notions appear, since: 
 + 
 +  * a system with fixed entropy and volume will choose the state with minimum internal energy $U$,  
 +  * a system with fixed temperature and volume will choose the state with minimum enthalpy $H$,  
 +  * a system with fixed entropy and pressure will choose the state with minimum Helmholtz free energy $A$,  
 +  * a system with fixed temperature and pressure will choose the state with minimum Gibbs free energy $G$.) 
 + 
 + 
 +---- 
 + 
 +For a great explanation,​ why the Maxwell relations are "just a sneaky way of saying that the mixed partial derivatives of the function U commute"​. see https://​johncarlosbaez.wordpress.com/​2012/​01/​19/​classical-mechanics-versus-thermodynamics-part-1/​ 
 + 
 + 
 +(The fact that partial derivatives commute is known as Schwarz'​ theorem (see  https://​en.wikipedia.org/​wiki/​Maxwell_relations . Schwarz'​ theorem is simply a way of stating "the fact that a function S doesn’t change when we go around a parallelogram"​ https://​johncarlosbaez.wordpress.com/​2012/​01/​23/​classical-mechanics-versus-thermodynamics-part-2/​) 
 +<​tabbox ​Abstract 
 + 
 +<note tip> 
 +The motto in this section is: //the higher the level of abstraction,​ the better//. 
 +</​note>​ 
 + 
 +<tabbox Why is it interesting?>​  
 +The Maxwell relations encode useful relationships between notions of [[theories:​thermodynamics|thermodynamics]]. ​
  
 </​tabbox>​ </​tabbox>​
  
  
formulas/maxwell_relations.txt · Last modified: 2018/12/19 11:01 by jakobadmin