User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
formulas:lorentz_force_law [2018/04/14 10:24]
aresmarrero [Concrete]
formulas:lorentz_force_law [2018/05/13 09:18] (current)
jakobadmin ↷ Page moved from equations:lorentz_force_law to formulas:lorentz_force_law
Line 15: Line 15:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
----- 
- 
 **Derivation** **Derivation**
  
Line 22: Line 20:
 \begin{equation} \begin{equation}
 \label{eq:​Lagrangian-relativistic-EM} \label{eq:​Lagrangian-relativistic-EM}
- ​L(q,​\dot{q}) = m\norm{\dot{q}} + eA_i\dot{q}^i ​+ ​L(q,​\dot{q}) = m|{\dot{q}}+ eA_i\dot{q}^i ​
 \end{equation} \end{equation}
 so we can work out the Euler--Lagrange equations: so we can work out the Euler--Lagrange equations:
 \begin{align*} \begin{align*}
- p_i = \frac{\pa L}{\pa\dot{q}^i} &= m\frac{\dot{q}_i}{\norm{\dot{q}}} + eA_i\\+ p_i = \frac{\partial ​L}{\partial ​\dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\
  &​= m v_i + e \,A_i  &​= m v_i + e \,A_i
 \end{align*} \end{align*}
-where $v$ is the velocity, which we normalize such that $\norm{v}=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force+where $v$ is the velocity, which we normalize such that $|v|=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force
 \begin{align*} \begin{align*}
- F_i = \frac{\pa L}{\pa q^i} &= \frac{\pa}{\pa q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ + F_i = \frac{\partial ​L}{\partial ​q^i} &= \frac{\partial}{\partial ​q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
- &​= e\frac{\pa A_j}{\pa q^i} \dot{q}^j+ &​= e\frac{\partial ​A_j}{\partial ​q^i} \dot{q}^j
 \end{align*} \end{align*}
 So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​
 \begin{align*} \begin{align*}
  ​\dot{p} &= F \\  ​\dot{p} &= F \\
- ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j\\ + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j  + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j  
- - e\frac{\pa A_i}{\pa q^j}\dot{q}^j\\ + - e\frac{\partial ​A_i}{\partial ​q^j}\dot{q}^j\\ 
- &​= e\left(\frac{\pa A_j}{\pa q^i} - \frac{\pa A_i}{\pa q^j}\right)\dot{q}^j .+ &​= e\left(\frac{\partial ​A_j}{\partial ​q^i} - \frac{\partial ​A_i}{\partial ​q^j}\right)\dot{q}^j .
 \end{align*} \end{align*}
-Here, term in parentheses is $\fvect{F}_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are+Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are
  
 \begin{equation} \begin{equation}
-\boxed{ + m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​
- ​\eqngapabove \gapleft +
- m\frac{d v_i}{dt} = e\fvect{F}_{ij}\dot{q}^j, ​\quad\text{(Lorentz force law)} +
- ​\gapright \eqngapbelow +
-}+
 \end{equation} \end{equation}
  
-which we call the Lorentz law.)+which we call the Lorentz law.
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
formulas/lorentz_force_law.1523694279.txt.gz · Last modified: 2018/04/14 08:24 (external edit)