User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
formulas:lorentz_force_law [2018/03/28 13:16]
jakobadmin [Intuitive]
formulas:lorentz_force_law [2018/05/13 09:18] (current)
jakobadmin ↷ Page moved from equations:lorentz_force_law to formulas:lorentz_force_law
Line 15: Line 15:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +**Derivation**
  
-<note tip> +The [[formalisms:​lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is 
-In this section things should be explained by analogy and with pictures andif necessarysome formulas+\begin{equation} 
-</​note>​+\label{eq:​Lagrangian-relativistic-EM} 
 + L(q,\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i  
 +\end{equation} 
 +so we can work out the Euler--Lagrange equations:​ 
 +\begin{align*} 
 + p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ 
 + &​= m v_i + e \,A_i 
 +\end{align*} 
 +where $v$ is the velocity, which we normalize such that $|v|=1$ An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force 
 +\begin{align*} 
 + F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
 + &​= e\frac{\partial A_j}{\partial q^i} \dot{q}^j 
 +\end{align*} 
 +So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ 
 +\begin{align*} 
 + ​\dot{p} &= F \\ 
 + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j  
 + - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ 
 + &​= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . 
 +\end{align*} 
 +Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are 
 + 
 +\begin{equation} 
 + ​m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​ 
 +\end{equation} 
 + 
 +which we call the Lorentz law.
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
formulas/lorentz_force_law.1522235817.txt.gz · Last modified: 2018/03/28 11:16 (external edit)