Both sides previous revision Previous revision Next revision | Previous revision | ||
formulas:lorentz_force_law [2018/03/28 13:11] jakobadmin |
formulas:lorentz_force_law [2018/05/13 09:18] (current) jakobadmin ↷ Page moved from equations:lorentz_force_law to formulas:lorentz_force_law |
||
---|---|---|---|
Line 7: | Line 7: | ||
<tabbox Intuitive> | <tabbox Intuitive> | ||
- | <note tip> | + | The Lorentz force law completes classical electromagnetic and describes the effect of electric and magnetic fields on a point charge. |
- | Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. | + | |
- | </note> | + | In addition, the [[equations:maxwell_equations|Maxwell equations]] tells us how charges give rise to electric and magnetic fields. |
+ | |||
+ | |||
| | ||
<tabbox Concrete> | <tabbox Concrete> | ||
+ | **Derivation** | ||
+ | |||
+ | The [[formalisms:lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is | ||
+ | \begin{equation} | ||
+ | \label{eq:Lagrangian-relativistic-EM} | ||
+ | L(q,\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i | ||
+ | \end{equation} | ||
+ | so we can work out the Euler--Lagrange equations: | ||
+ | \begin{align*} | ||
+ | p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ | ||
+ | &= m v_i + e \,A_i | ||
+ | \end{align*} | ||
+ | where $v$ is the velocity, which we normalize such that $|v|=1$. An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force | ||
+ | \begin{align*} | ||
+ | F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,A_j\dot{q}^j\Bigr)\\ | ||
+ | &= e\frac{\partial A_j}{\partial q^i} \dot{q}^j | ||
+ | \end{align*} | ||
+ | So the [[equations:euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$: | ||
+ | \begin{align*} | ||
+ | \dot{p} &= F \\ | ||
+ | \frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ | ||
+ | m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ | ||
+ | m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j | ||
+ | - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ | ||
+ | &= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . | ||
+ | \end{align*} | ||
+ | Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. Therefore, the equations of motion are | ||
+ | |||
+ | \begin{equation} | ||
+ | m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j, | ||
+ | \end{equation} | ||
- | <note tip> | + | which we call the Lorentz law. |
- | In this section things should be explained by analogy and with pictures and, if necessary, some formulas. | + | |
- | </note> | + | |
<tabbox Abstract> | <tabbox Abstract> |