Both sides previous revision Previous revision Next revision | Previous revision | ||
formulas:lorentz_force_law [2017/11/23 09:41] jakobadmin ↷ Page moved from theories:classical_theories:electrodynamics:lorentz_force_law to basic_tools:electrodynamics:lorentz_force_law |
formulas:lorentz_force_law [2018/05/13 09:18] (current) jakobadmin ↷ Page moved from equations:lorentz_force_law to formulas:lorentz_force_law |
||
---|---|---|---|
Line 1: | Line 1: | ||
+ | <WRAP lag>$ \vec F= q \vec E + q\vec v \times \vec B$</WRAP> | ||
+ | |||
+ | |||
====== Lorentz Force Law ====== | ====== Lorentz Force Law ====== | ||
- | <tabbox Why is it interesting?> | ||
- | <tabbox Layman> | + | <tabbox Intuitive> |
+ | |||
+ | The Lorentz force law completes classical electromagnetic and describes the effect of electric and magnetic fields on a point charge. | ||
+ | |||
+ | In addition, the [[equations:maxwell_equations|Maxwell equations]] tells us how charges give rise to electric and magnetic fields. | ||
+ | |||
- | <note tip> | ||
- | Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. | ||
- | </note> | ||
| | ||
- | <tabbox Student> | + | <tabbox Concrete> |
+ | **Derivation** | ||
- | <note tip> | + | The [[formalisms:lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is |
- | In this section things should be explained by analogy and with pictures and, if necessary, some formulas. | + | \begin{equation} |
- | </note> | + | \label{eq:Lagrangian-relativistic-EM} |
+ | L(q,\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i | ||
+ | \end{equation} | ||
+ | so we can work out the Euler--Lagrange equations: | ||
+ | \begin{align*} | ||
+ | p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ | ||
+ | &= m v_i + e \,A_i | ||
+ | \end{align*} | ||
+ | where $v$ is the velocity, which we normalize such that $|v|=1$. An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force | ||
+ | \begin{align*} | ||
+ | F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,A_j\dot{q}^j\Bigr)\\ | ||
+ | &= e\frac{\partial A_j}{\partial q^i} \dot{q}^j | ||
+ | \end{align*} | ||
+ | So the [[equations:euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$: | ||
+ | \begin{align*} | ||
+ | \dot{p} &= F \\ | ||
+ | \frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ | ||
+ | m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ | ||
+ | m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j | ||
+ | - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ | ||
+ | &= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . | ||
+ | \end{align*} | ||
+ | Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. Therefore, the equations of motion are | ||
+ | |||
+ | \begin{equation} | ||
+ | m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j, | ||
+ | \end{equation} | ||
+ | |||
+ | which we call the Lorentz law. | ||
- | <tabbox Researcher> | + | <tabbox Abstract> |
<blockquote>The classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded | <blockquote>The classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded | ||
Line 24: | Line 58: | ||
- | <tabbox Examples> | + | <tabbox Why is it interesting?> |
- | + | ||
- | --> Example1# | + | |
- | |||
- | <-- | ||
- | |||
- | --> Example2:# | ||
- | |||
- | |||
- | <-- | ||
- | | ||
- | <tabbox History> | ||
</tabbox> | </tabbox> | ||