User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:lorentz_force_law [2018/04/14 10:24]
aresmarrero [Concrete]
formulas:lorentz_force_law [2018/04/14 10:27]
aresmarrero [Concrete]
Line 15: Line 15:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
----- 
- 
 **Derivation** **Derivation**
  
Line 22: Line 20:
 \begin{equation} \begin{equation}
 \label{eq:​Lagrangian-relativistic-EM} \label{eq:​Lagrangian-relativistic-EM}
- ​L(q,​\dot{q}) = m\norm{\dot{q}} + eA_i\dot{q}^i ​+ ​L(q,​\dot{q}) = m|{\dot{q}}+ eA_i\dot{q}^i ​
 \end{equation} \end{equation}
 so we can work out the Euler--Lagrange equations: so we can work out the Euler--Lagrange equations:
 \begin{align*} \begin{align*}
- p_i = \frac{\pa L}{\pa\dot{q}^i} &= m\frac{\dot{q}_i}{\norm{\dot{q}}} + eA_i\\+ p_i = \frac{\partial ​L}{\partial ​\dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\
  &​= m v_i + e \,A_i  &​= m v_i + e \,A_i
 \end{align*} \end{align*}
-where $v$ is the velocity, which we normalize such that $\norm{v}=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force+where $v$ is the velocity, which we normalize such that $|v|=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force
 \begin{align*} \begin{align*}
- F_i = \frac{\pa L}{\pa q^i} &= \frac{\pa}{\pa q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ + F_i = \frac{\partial ​L}{\partial ​q^i} &= \frac{\partial}{\partial ​q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
- &​= e\frac{\pa A_j}{\pa q^i} \dot{q}^j+ &​= e\frac{\partial ​A_j}{\partial ​q^i} \dot{q}^j
 \end{align*} \end{align*}
 So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​
 \begin{align*} \begin{align*}
  ​\dot{p} &= F \\  ​\dot{p} &= F \\
- ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j\\ + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j  + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j  
- - e\frac{\pa A_i}{\pa q^j}\dot{q}^j\\ + - e\frac{\partial ​A_i}{\partial ​q^j}\dot{q}^j\\ 
- &​= e\left(\frac{\pa A_j}{\pa q^i} - \frac{\pa A_i}{\pa q^j}\right)\dot{q}^j .+ &​= e\left(\frac{\partial ​A_j}{\partial ​q^i} - \frac{\partial ​A_i}{\partial ​q^j}\right)\dot{q}^j .
 \end{align*} \end{align*}
-Here, term in parentheses is $\fvect{F}_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are+Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are
  
 \begin{equation} \begin{equation}
-\boxed{ + m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​
- ​\eqngapabove \gapleft +
- m\frac{d v_i}{dt} = e\fvect{F}_{ij}\dot{q}^j, ​\quad\text{(Lorentz force law)} +
- ​\gapright \eqngapbelow +
-}+
 \end{equation} \end{equation}
  
-which we call the Lorentz law.)+which we call the Lorentz law.
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin