User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
formulas:lorentz_force_law [2018/04/14 10:24]
aresmarrero [Concrete]
formulas:lorentz_force_law [2018/04/14 10:26]
aresmarrero [Concrete]
Line 22: Line 22:
 \begin{equation} \begin{equation}
 \label{eq:​Lagrangian-relativistic-EM} \label{eq:​Lagrangian-relativistic-EM}
- ​L(q,​\dot{q}) = m\norm{\dot{q}} + eA_i\dot{q}^i ​+ ​L(q,​\dot{q}) = m|{\dot{q}}+ eA_i\dot{q}^i ​
 \end{equation} \end{equation}
 so we can work out the Euler--Lagrange equations: so we can work out the Euler--Lagrange equations:
 \begin{align*} \begin{align*}
- p_i = \frac{\pa L}{\pa\dot{q}^i} &= m\frac{\dot{q}_i}{\norm{\dot{q}}} + eA_i\\+ p_i = \frac{\partial ​L}{\partial ​\dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\
  &​= m v_i + e \,A_i  &​= m v_i + e \,A_i
 \end{align*} \end{align*}
-where $v$ is the velocity, which we normalize such that $\norm{v}=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force+where $v$ is the velocity, which we normalize such that $|v|=1$.  An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force
 \begin{align*} \begin{align*}
- F_i = \frac{\pa L}{\pa q^i} &= \frac{\pa}{\pa q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ + F_i = \frac{\partial ​L}{\partial ​q^i} &= \frac{\partial}{\partial ​q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
- &​= e\frac{\pa A_j}{\pa q^i} \dot{q}^j+ &​= e\frac{\partial ​A_j}{\partial ​q^i} \dot{q}^j
 \end{align*} \end{align*}
 So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​
 \begin{align*} \begin{align*}
  ​\dot{p} &= F \\  ​\dot{p} &= F \\
- ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j\\ + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
- ​m\frac{d v_i}{dt} &= e\frac{\pa A_j}{\pa q^i}\dot{q}^j  + ​m\frac{d v_i}{dt} &= e\frac{\partial ​A_j}{\partial ​q^i}\dot{q}^j  
- - e\frac{\pa A_i}{\pa q^j}\dot{q}^j\\ + - e\frac{\partial ​A_i}{\partial ​q^j}\dot{q}^j\\ 
- &​= e\left(\frac{\pa A_j}{\pa q^i} - \frac{\pa A_i}{\pa q^j}\right)\dot{q}^j .+ &​= e\left(\frac{\partial ​A_j}{\partial ​q^i} - \frac{\partial ​A_i}{\partial ​q^j}\right)\dot{q}^j .
 \end{align*} \end{align*}
 Here, term in parentheses is $\fvect{F}_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are Here, term in parentheses is $\fvect{F}_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin