User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:lorentz_force_law [2018/03/28 13:10]
jakobadmin
formulas:lorentz_force_law [2018/04/14 10:27]
aresmarrero [Concrete]
Line 1: Line 1:
 +<WRAP lag>$ \vec  F= q \vec E + q\vec v \times \vec B$</​WRAP>​
 +
 +
 ====== Lorentz Force Law ====== ====== Lorentz Force Law ======
  
Line 4: Line 7:
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
  
-<note tip> +The Lorentz force law completes classical electromagnetic and describes the effect of electric and magnetic fields on a point charge. ​ 
-Explanations in this section should contain no formulasbut instead colloquial things like you would hear them during a coffee break or at a cocktail party+ 
-</​note>​+In additionthe [[equations:​maxwell_equations|Maxwell equations]] tells us how charges give rise to electric and magnetic fields
 + 
 + 
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +**Derivation**
 +
 +The [[formalisms:​lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is
 +\begin{equation}
 +\label{eq:​Lagrangian-relativistic-EM}
 + ​L(q,​\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i ​
 +\end{equation}
 +so we can work out the Euler--Lagrange equations:
 +\begin{align*}
 + p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\
 + &​= m v_i + e \,A_i
 +\end{align*}
 +where $v$ is the velocity, which we normalize such that $|v|=1$. ​ An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force
 +\begin{align*}
 + F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\
 + &​= e\frac{\partial A_j}{\partial q^i} \dot{q}^j
 +\end{align*}
 +So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​
 +\begin{align*}
 + ​\dot{p} &= F \\
 + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j ​
 + - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\
 + &​= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j .
 +\end{align*}
 +Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are
 +
 +\begin{equation}
 + ​m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​
 +\end{equation}
  
-<note tip> +which we call the Lorentz law.
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. +
-</​note>​+
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin