User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:lorentz_force_law [2018/03/28 13:10]
jakobadmin ↷ Page moved from basic_notions:electrodynamics:lorentz_force_law to equations:lorentz_force_law
formulas:lorentz_force_law [2018/04/14 10:27]
aresmarrero [Concrete]
Line 1: Line 1:
 +<WRAP lag>$ \vec  F= q \vec E + q\vec v \times \vec B$</​WRAP>​
 +
 +
 ====== Lorentz Force Law ====== ====== Lorentz Force Law ======
  
-<tabbox Why is it interesting?> ​ 
  
-<​tabbox ​Layman+<​tabbox ​Intuitive 
 + 
 +The Lorentz force law completes classical electromagnetic and describes the effect of electric and magnetic fields on a point charge.  
 + 
 +In addition, the [[equations:​maxwell_equations|Maxwell equations]] tells us how charges give rise to electric and magnetic fields. 
 + 
  
-<note tip> 
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. 
-</​note>​ 
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete 
 +**Derivation**
  
-<note tip> +The [[formalisms:​lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is 
-In this section things should be explained by analogy and with pictures andif necessarysome formulas+\begin{equation} 
-</​note>​+\label{eq:​Lagrangian-relativistic-EM} 
 + L(q,\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i  
 +\end{equation} 
 +so we can work out the Euler--Lagrange equations:​ 
 +\begin{align*} 
 + p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ 
 + &​= m v_i + e \,A_i 
 +\end{align*} 
 +where $v$ is the velocity, which we normalize such that $|v|=1$ An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force 
 +\begin{align*} 
 + F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
 + &​= e\frac{\partial A_j}{\partial q^i} \dot{q}^j 
 +\end{align*} 
 +So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ 
 +\begin{align*} 
 + ​\dot{p} &= F \\ 
 + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j  
 + - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ 
 + &​= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . 
 +\end{align*} 
 +Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are 
 + 
 +\begin{equation} 
 + ​m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​ 
 +\end{equation} 
 + 
 +which we call the Lorentz law.
    
-<​tabbox ​Researcher+<​tabbox ​Abstract
  
 <​blockquote>​The classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded <​blockquote>​The classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded
Line 24: Line 58:
  
  
-<​tabbox ​Examples +<​tabbox ​Why is it interesting?​
- +
---> Example1#+
  
-  
-<-- 
- 
---> Example2:# 
- 
-  
-<-- 
-  ​ 
-<tabbox History> ​ 
  
 </​tabbox>​ </​tabbox>​
  
  
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin