User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:lorentz_force_law [2017/10/27 13:12]
jakobadmin ↷ Page moved from classical_theories:electrodynamics:lorentz_force_law to theories:classical_theories:electrodynamics:lorentz_force_law
formulas:lorentz_force_law [2018/04/14 10:27]
aresmarrero [Concrete]
Line 1: Line 1:
-====== Lorentz Force Law ======+<WRAP lag>$ \vec  Fq \vec E + q\vec v \times \vec B$</​WRAP>​
  
-<tabbox Why is it interesting?> ​ 
  
-<tabbox Layman> ​+====== Lorentz Force Law ======
  
-<note tip> 
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. 
-</​note>​ 
-  ​ 
-<tabbox Student> ​ 
  
-<note tip> +<​tabbox ​Intuitive
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. +
-</​note>​ +
-  +
-<​tabbox ​Researcher+
  
-For derivation, using the Ehrenfest theorem, see http://​www.physics.drexel.edu/​~bob/​PHYS517/​Ehrenfest.pdf+The Lorentz force law completes classical electromagnetic and describes the effect of electric and magnetic fields on point charge
  
---> Common Question 1#+In addition, the [[equations:​maxwell_equations|Maxwell equations]] tells us how charges give rise to electric and magnetic fields.
  
-  
-<-- 
  
---> Common Question 2# 
  
-  
-<-- 
   ​   ​
-<​tabbox ​Examples+<​tabbox ​Concrete 
 +**Derivation**
  
---> Example1#+The [[formalisms:​lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is 
 +\begin{equation} 
 +\label{eq:​Lagrangian-relativistic-EM} 
 + ​L(q,​\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i  
 +\end{equation} 
 +so we can work out the Euler--Lagrange equations:​ 
 +\begin{align*} 
 + p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ 
 + &​= m v_i + e \,A_i 
 +\end{align*} 
 +where $v$ is the velocity, which we normalize such that $|v|=1$. ​ An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force 
 +\begin{align*} 
 + F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
 + &​= e\frac{\partial A_j}{\partial q^i} \dot{q}^j 
 +\end{align*} 
 +So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ 
 +\begin{align*} 
 + ​\dot{p} &= F \\ 
 + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j  
 + - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ 
 + &​= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . 
 +\end{align*} 
 +Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are
  
 +\begin{equation}
 + ​m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​
 +\end{equation}
 +
 +which we call the Lorentz law.
    
-<--+<tabbox Abstract> ​
  
---Example2:#+<​blockquote>​The classical mechanics of an electron propagating in an electromagnetic field on a spacetime X is all encoded 
 +in a differential 2-form on X, called the Faraday tensor F, which encodes the classical Lorentz force that the 
 +electromagnetic field exerts on the electron.<​cite>https://​arxiv.org/​abs/​1601.05956</​cite></​blockquote>​ 
 + 
 +For a derivation, using the Ehrenfest theorem, see http://​www.physics.drexel.edu/​~bob/​PHYS517/​Ehrenfest.pdf 
 + 
 + 
 +<tabbox Why is it interesting?> ​
  
-  
-<-- 
-  ​ 
-<tabbox History> ​ 
  
 </​tabbox>​ </​tabbox>​
  
  
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin