User Tools

Site Tools


formulas:lorentz_force_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
formulas:lorentz_force_law [2018/03/28 13:16]
jakobadmin [Intuitive]
formulas:lorentz_force_law [2018/04/14 10:27]
aresmarrero [Concrete]
Line 15: Line 15:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +**Derivation**
  
-<note tip> +The [[formalisms:​lagrangian_formalism|Lagrangian]] for a charge $e$ with mass $m$ in an electromagnetic potential $A$ is 
-In this section things should be explained by analogy and with pictures andif necessarysome formulas+\begin{equation} 
-</​note>​+\label{eq:​Lagrangian-relativistic-EM} 
 + L(q,\dot{q}) = m|{\dot{q}}| + eA_i\dot{q}^i  
 +\end{equation} 
 +so we can work out the Euler--Lagrange equations:​ 
 +\begin{align*} 
 + p_i = \frac{\partial L}{\partial \dot{q}^i} &= m\frac{\dot{q}_i}{|{\dot{q}}|} + eA_i\\ 
 + &​= m v_i + e \,A_i 
 +\end{align*} 
 +where $v$ is the velocity, which we normalize such that $|v|=1$ An important observation is that here momentum is no longer simply mass times velocity! Continuing the analysis, we find the force 
 +\begin{align*} 
 + F_i = \frac{\partial L}{\partial q^i} &= \frac{\partial}{\partial q^i}\Bigl(e\,​A_j\dot{q}^j\Bigr)\\ 
 + &​= e\frac{\partial A_j}{\partial q^i} \dot{q}^j 
 +\end{align*} 
 +So the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] give us (using $A_i=A_j\Bigl(q(t)\Bigr)$:​ 
 +\begin{align*} 
 + ​\dot{p} &= F \\ 
 + ​\frac{d}{dt}\Bigl(mv_i+eA_i\Bigr) &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j - e\frac{d A_i}{dt}\\ 
 + ​m\frac{d v_i}{dt} &= e\frac{\partial A_j}{\partial q^i}\dot{q}^j  
 + - e\frac{\partial A_i}{\partial q^j}\dot{q}^j\\ 
 + &​= e\left(\frac{\partial A_j}{\partial q^i} - \frac{\partial A_i}{\partial q^j}\right)\dot{q}^j . 
 +\end{align*} 
 +Here, term in parentheses is $F_{ij}=$ the electromagnetic field, $F=dA$. ​ Therefore, the equations of motion are 
 + 
 +\begin{equation} 
 + ​m\frac{d v_i}{dt} = e F_{ij}\dot{q}^j,​ 
 +\end{equation} 
 + 
 +which we call the Lorentz law.
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
formulas/lorentz_force_law.txt · Last modified: 2018/05/13 09:18 by jakobadmin