User Tools

Site Tools


formulas:gauss_law

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
formulas:gauss_law [2018/03/30 15:39]
jakobadmin [Concrete]
formulas:gauss_law [2018/05/13 09:19] (current)
jakobadmin ↷ Page moved from formulas:yang_mills_equations:gauss_law to formulas:gauss_law
Line 1: Line 1:
 ====== Gauss Law ====== ====== Gauss Law ======
 +//also called "Gauss constraint"//​
  
  
Line 6: Line 6:
  
   * https://​www.physicsforums.com/​insights/​partial-derivation-gausss-law/​   * https://​www.physicsforums.com/​insights/​partial-derivation-gausss-law/​
 +
 +
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
 **Gauss'​ Law for Yang-Mills Theories** ​ **Gauss'​ Law for Yang-Mills Theories** ​
  
-Gauss' law for Yang-Mills theories reads 
  
-$$  I(x) \equiv D_i G^{0i} ​=\partial_i E^i + [A_i,E^i]=0 $$+Gauss law is the $\nu=0$ component of the [[equations:​yang_mills_equations|Yang-Mills equation]]
  
-and is one of the field equations that are derivable from the [[equations:​yang_mills_equations|Yang-Mills Lagrangian]]+$$ (\partial_\mu F_{\mu \nu})^a = g j_\nu^a ​ $$ 
 +$$ \rightarrow (\partial_i F_{i 0})^a = g j_0^a  $$ 
 +which is exactly analogous to the inhomogeneous Maxwell equation in the presence of matter fields
  
-It does not contain second order time derivatatives ​is therefore not an equation that govers ​the time development (=an equation of motion), but rather a constraint on the initial conditions. ​+It does not contain second order time derivatives ​is therefore not an equation that governs ​the time development (=an equation of motion), but rather a constraint on the initial conditions. ​
  
-As in the abelian case discussed abovethis equation contradicts the commutator relations and thus is not an operator equation. Instead, we use it as a condition for physical states, which have to satisfy:+//(Source: "​Classical Theory of Gauge Fields"​ by Rubakov. See also the discussion there for more details.) 
 +// 
 + 
 +We can rewrite it in terms of the gauge potentials as 
 + 
 +$$  I(x) \equiv D_i G^{0i} =\partial_i E^i + [A_i,E^i]=0 .$$ 
 + 
 + 
 +This equation contradicts the commutator relations and thus is not an operator equation. Instead, we use it as a condition for physical states, which have to satisfy:
  
 $$ D_i E^i |\Psi\rangle _{phys}=0. $$ $$ D_i E^i |\Psi\rangle _{phys}=0. $$
Line 42: Line 53:
 ---- ----
  
 +
 +
 +
 +**Recommended Reading**
 +
 +http://​ethesis.helsinki.fi/​julkaisut/​mat/​fysik/​vk/​salmela/​gausssla.pdf
 +
 +<tabbox Abstract> ​
 **Gauss law generates gauge transformations** **Gauss law generates gauge transformations**
  
Line 97: Line 116:
 ---- ----
  
- 
- 
-**Recommended Reading** 
- 
-http://​ethesis.helsinki.fi/​julkaisut/​mat/​fysik/​vk/​salmela/​gausssla.pdf 
- 
-<tabbox Abstract> ​ 
  
 <​blockquote>​Additional complications arise when defining quantised gauge field theories. This is because the restriction of a theory to be invariant under a gauge group symmetry $\mathcal{G}$,​ which corresponds to local invariance under some global symmetry group $G$, leads to a strengthened form of the Noether current conservation condition called the //local Gauss law// [11]: <​blockquote>​Additional complications arise when defining quantised gauge field theories. This is because the restriction of a theory to be invariant under a gauge group symmetry $\mathcal{G}$,​ which corresponds to local invariance under some global symmetry group $G$, leads to a strengthened form of the Noether current conservation condition called the //local Gauss law// [11]:
Line 120: Line 132:
 <​cite>​[[https://​arxiv.org/​abs/​1408.3233|Boundary terms in quantum field theory and the spin structure of QCD]] by Peter Lowdon</​cite></​blockquote>​ <​cite>​[[https://​arxiv.org/​abs/​1408.3233|Boundary terms in quantum field theory and the spin structure of QCD]] by Peter Lowdon</​cite></​blockquote>​
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
 +Gauss law in an important constraint on the initial data in gauge theories. It is particularly important if we want to understand how we can [[advanced_tools:​gauge_symmetry:​gauge_fixing|fix the gauge]] consistently.
  
 <​blockquote>​ <​blockquote>​
formulas/gauss_law.1522417167.txt.gz · Last modified: 2018/03/30 13:39 (external edit)