User Tools

Site Tools


formalisms

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
formalisms [2018/05/05 12:23]
jakobadmin ↷ Links adapted because of a move operation
formalisms [2020/04/02 20:08] (current)
184.147.122.3
Line 6: Line 6:
 There are four big formalisms that are used almost everywhere in modern physics: There are four big formalisms that are used almost everywhere in modern physics:
  
-  * The [[formalisms:​hamiltonian_formalism|Hamiltonian ​Framework]], where we describe the evolution of our system as a trajectory in [[basic_tools:​phase_space|phase space]]. +  * The [[formalisms:​hamiltonian_formalism|Hamiltonian ​formalism]], where we describe the evolution of our system as a trajectory in [[basic_tools:​phase_space|phase space]]. 
-  * The [[formalisms:​lagrangian_formalism|Lagrangian ​Framework]], where we describe the evolution of our system as a trajectory in [[basic_tools:​configuration_space|configuration space]]. +  * The [[formalisms:​lagrangian_formalism|Lagrangian ​formalism]], where we describe the evolution of our system as a trajectory in [[basic_tools:​configuration_space|configuration space]]. 
-  * The Newtonian formalism where we describe the system in terms of trajectories in real space.+  * The Newtonian formalism where we describe the system in terms of trajectories in everyday ​space.
   * The Schrödinger formalism, where we describe the system in terms of abstract vectors living in [[basic_tools:​hilbert_space|Hilbert space]]. ​   * The Schrödinger formalism, where we describe the system in terms of abstract vectors living in [[basic_tools:​hilbert_space|Hilbert space]]. ​
  
-Each formalism has strengths and weaknesses. Which one is better depends on the system we wish to describe. +Each formalism has strengths and weaknesses ​and which one is better depends on the system we wish to describe.
  
 ---- ----
Line 20: Line 19:
  
 ^ Lagrangian formalism ​                                                                                                                                             ^ Hamiltonian formalism ​                                                                                                                              ^ ^ Lagrangian formalism ​                                                                                                                                             ^ Hamiltonian formalism ​                                                                                                                              ^
-| We describe the state of a system with $n$ degrees of freedom with the $n$ coordinates $(q_1,​\ldots,​ q_n)$ and the $n$ velocities $(\dot{q}_1,​\ldots , \dot{q}_n)$ ​ | We describe the state the a system with $n$ degrees of freedom by the $n$ coordinates $(q_1,​\ldots,​ q_n)$ and the $n$ momenta $(p_1,​\ldots , p_n)$  |+| We describe the state of a system with $n$ degrees of freedom with the $n$ coordinates $(q_1,​\ldots,​ q_n)$ and the $n$ velocities $(\dot{q}_1,​\ldots , \dot{q}_n)$ ​ | We describe the state of a system with $n$ degrees of freedom by the $n$ coordinates $(q_1,​\ldots,​ q_n)$ and the $n$ momenta $(p_1,​\ldots , p_n)$  |
 | We represent the //state// of the system by a point moving with a definite velocity in an $n$-dimensional configuration space | We represent the //state// of the system by a point moving with a definite velocity in an $2n$-dimensional phase space with coordinates $(q_1,​\ldots,​ q_n; p_1,\ldots , p_n)$ | | We represent the //state// of the system by a point moving with a definite velocity in an $n$-dimensional configuration space | We represent the //state// of the system by a point moving with a definite velocity in an $2n$-dimensional phase space with coordinates $(q_1,​\ldots,​ q_n; p_1,\ldots , p_n)$ |
 | The $n$ configuration space coordinates evolve according to $n$ second-order equations | The $2n$ phase space coordinates evolve according to $2n$ first-order equations | | The $n$ configuration space coordinates evolve according to $n$ second-order equations | The $2n$ phase space coordinates evolve according to $2n$ first-order equations |
Line 30: Line 29:
  
 ^                            | **Classical Mechanics **                                                                      | **Quantum Mechanics** ​                                                                      | ^                            | **Classical Mechanics **                                                                      | **Quantum Mechanics** ​                                                                      |
-| **Newtonian Formalism** ​   | [[theories:​classical_mechanics:​newtonian_mechanics|Newtonian Mechanics]] ​                     | [[theories:​quantum_mechanics:​bohmian_mechanics|Bohmian mechanics]] ​                         | +| **Newtonian Formalism** ​   | [[theories:​classical_mechanics:​newtonian|Newtonian Mechanics]] ​                     | [[theories:​quantum_mechanics:​bohmian|Bohmian mechanics]] ​                         | 
-| ** Lagrangian Formalism** ​ | [[theories:​classical_mechanics:​lagrangian_mechanics|Lagrangian mechanics]] ​                   | [[theories:​quantum_mechanics:​path_integral|Path Integral Quantum Mechanics]] ​               | +| ** Lagrangian Formalism** ​ | [[theories:​classical_mechanics:​lagrangian|Lagrangian mechanics]] ​                   | [[theories:​quantum_mechanics:​path_integral|Path Integral Quantum Mechanics]] ​               | 
-| **Hamiltonian Formalism** ​ | [[theories:​classical_mechanics:​hamiltonian_mechanics|Hamiltonian Mechanics]] ​                 | [[theories:​quantum_mechanics:​phase_space|Phase space quantum mechanics]] ​ | +| **Hamiltonian Formalism** ​ | [[theories:​classical_mechanics:​hamiltonian|Hamiltonian Mechanics]] ​                 | [[theories:​quantum_mechanics:​phase_space|Phase space quantum mechanics]] ​ | 
-| **Schrödinger Formalism** ​ | [[theories:​classical_mechanics:​koopman_von_neumann_mechanics|Koopman-von-Neumann Mechanics]] ​ | [[theories:​quantum_mechanics:​canonical_quantum_mechanics|Canonical quantum mechanics]] ​     |+| **Schrödinger Formalism** ​ | [[theories:​classical_mechanics:​koopman_von_neumann_mechanics|Koopman-von-Neumann Mechanics]] ​ | [[theories:​quantum_mechanics:​canonical|Canonical quantum mechanics]] ​     |
  
 The connection between a Lagrangian and the corresponding Hamiltonian is given by the [[advanced_tools:​legendre_transformation|Legendre transformation]]. ​ The connection between a Lagrangian and the corresponding Hamiltonian is given by the [[advanced_tools:​legendre_transformation|Legendre transformation]]. ​
Line 49: Line 48:
  
 $$ m \frac{d^2}{dt^2} x=-kx , $$ $$ m \frac{d^2}{dt^2} x=-kx , $$
-wher $x$ denotes the position of the object and $k$ the spring constant that characterises the mechanical spring. (This is known as Hooke'​s law.)+where $x$ denotes the position of the object and $k$ the spring constant that characterises the mechanical spring. (This is known as Hooke'​s law.)
  
  
formalisms.1525515827.txt.gz · Last modified: 2018/05/05 10:23 (external edit)