User Tools

Site Tools


equations:yang_mills_equations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:yang_mills_equations [2018/03/26 17:33]
jakobadmin ↷ Page name changed from equations:yang_mills_equation to equations:yang_mills_equations
equations:yang_mills_equations [2022/02/10 16:43] (current)
2601:845:c302:8e50:4df7:1623:815b:9c99
Line 1: Line 1:
 +<WRAP lag> $  \partial^{\mu}F_{\mu\nu}^a-gf_{abc}A^{\mu}_bF_{\mu\nu}^c=0$</​WRAP>​
 +
 ====== Yang-Mills Equations ====== ====== Yang-Mills Equations ======
  
-//see also [[theories:​classical_theories:​gauge_theory]] and [[advanced_tools:​gauge_symmetry|]] //+//see also [[models:​gauge_theory]] and [[advanced_tools:​gauge_symmetry|]] //
  
-<tabbox Intuitive> ​+<tabbox Intuitive> ​L=1/​4g²∫TrF∧∗F
  
 <note tip> <note tip>
Line 11: Line 13:
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
-<note tip+-->Derivation of the Yang-Mills equation from the Yang-Mills Lagrangian#​ 
-In this section things should be explained by analogy ​and with pictures and, if necessary, some formulas+ 
-</note> +Let  
- +\begin{equation} 
 +\mathcal{L}=-\frac 14 F^{\mu\nu}_aF_{\mu\nu}^a 
 +\end{equation} ​   
 +and $A^{\mu}_a$ be real functions. 
 + 
 + 
 +The [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] for  
 +$\mathcal{L}=\mathcal{L}(A^{\mu},​\partial^{\nu}A^{\mu})$ are 
 +\begin{equation} 
 +\partial^{\nu}\left( \frac {\mathcal{L}}{\partial\left(\partial^{\nu}A_a^{\mu}\right)}\right)=\frac {\partial \mathcal{L}}{\partial A_a^{\mu}} 
 +\end{equation} ​   
 + 
 + 
 +Then  
 + 
 +\begin{align} 
 +&\frac {\partial F^{\mu\nu}_d}{\partial A_a^{\mu}}=-gf_{dac}A_c^{\nu}\\ 
 +&\frac {\partial F^d_{\mu\nu}}{\partial A_a^{\mu}}=-gf_{dac}A_c^{\nu}g_{\mu\mu}g_{\nu\nu}\\ 
 +&\frac {\partial \mathcal{L}}{\partial A_a^{\mu}}=\frac 12 gf_{abc}A_b^{\nu}F^c_{\mu\nu}\\ 
 +&\frac {\partial F^{\mu\nu}_d}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}=-\delta_{ad}\\ 
 +&\frac {\partial F^d_{\mu\nu}}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}=\delta_{ad}(g_{\mu\nu}g_{\nu\mu}-g_{\mu\mu}g_{\nu\nu})\\ 
 +&\frac {\partial \mathcal{L}}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}=\frac 12 F_{\mu\nu}^a 
 +\end{align} 
 + 
 +Directly computing 
 +\begin{equation} 
 +\begin{gathered} 
 +\frac {\partial F^{\mu\nu}_d}{\partial A_a^{\mu}}=\frac {\partial}{\partial A_a^{\mu}}\left( -gf_{dbc}A^{\mu}_bA^{\nu}_c\right) 
 +=-g\delta_{ab}f_{dbc}A_c^{\nu}= -gf_{dac}A_c^{\nu} 
 +\end{gathered} 
 +\end{equation} ​  
 + 
 +\begin{equation} 
 +\begin{gathered} 
 +\frac {\partial F^d_{\mu\nu}}{\partial A_a^{\mu}}=\frac {\partial}{\partial A_a^{\mu}}\left( -gf_{dbc}A^b_{\mu}A^c_{\nu}\right) 
 +=\frac {\partial}{\partial A_a^{\mu}}\left( -gf_{dbc}g_{\mu\alpha}A^{\alpha}_bA^c_{\nu}\right)\\ 
 +=-gf_{dac}g_{\mu\alpha}\delta_{\alpha\mu}\delta_{ab}A^c_{\nu}= -gf_{dac}A^c_{\nu}g_{\mu\mu}\\ 
 +=-gf_{dac}g_{\nu\alpha}A^{\alpha}_cg_{\mu\mu}= -gf_{dac}A_c^{\nu}g_{\mu\mu}g_{\nu\nu} 
 +\end{gathered} 
 +\end{equation} ​  
 + 
 + 
 +\begin{equation} 
 +\frac {\partial \mathcal{L}}{\partial A_a^{\mu}}=-\frac 14 \left(\left(\\ 
 +\frac {\partial F^{\mu\nu}_d}{\partial A_a^{\mu}}\right)F^d_{\mu\nu}\\ 
 ++F^{\mu\nu}_d\left(\frac {\partial F^d_{\mu\nu}}{\partial A_a^{\mu}}\right)\right) 
 +\end{equation} ​  
 + 
 +\begin{gather*} 
 +=\frac 14 gf_{dac}\left(A_c^{\nu}F^d_{\mu\nu}+F^{\mu\nu}_d A^{\nu}_cg_{\mu\mu}g_{\nu\nu}\right)\\ 
 +=\frac 14 gf_{dac}\left(A_c^{\nu}F^d_{\mu\nu}+A^{\nu}_cg_{\mu\alpha}g_{\nu\beta}F^{\alpha\beta}_d \right)\\ 
 +=\frac 14 gf_{dac}\left(A_c^{\nu}F^d_{\mu\nu}+A^{\nu}_cF^d_{\mu\nu} \right)\\ 
 +=\frac 12 gf_{dac}A_c^{\nu}F^d_{\mu\nu}=\frac 12 gf_{acd}A_c^{\nu}F^d_{\mu\nu}\\ 
 +=\frac 12 gf_{abc}A_b^{\nu}F^c_{\mu\nu} 
 +\end{gather*} 
 + 
 +\begin{gather*} 
 +\frac {\partial F^{\mu\nu}_d}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}=\frac {\partial}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}\left(\partial^{\mu}A^{\nu}_d-\partial^{\nu}A^{\mu}_d\right)=-\delta_{ad} 
 +\end{gather*} 
 + 
 +\begin{gather*} 
 +\frac {\partial F^d_{\mu\nu}}{\partial \left(\partial^{\nu}A_a^{\mu}\right)} 
 +=\frac {\partial}{\partial \left(\partial^{\nu}A_a^{\mu}\right)}\left(\partial_{\mu}A^d_{\nu}-\partial_{\nu}A^d_{\mu}\right)\\ 
 +=\frac {\partial}{\partial \left(\partial^{\nu}A_a^{\mu}\right)} 
 +\left(g_{\mu\alpha}g_{\nu\beta}\left(\partial^{\alpha}A^{\beta}_d-\partial^{\beta}A^{\alpha}_d\right)\right)\\ 
 +=g_{\mu\alpha}g_{\nu\beta}\delta_{ad}\delta_{\mu\beta}\delta_{\nu\alpha} 
 +-g_{\mu\alpha}g_{\nu\beta}\delta_{ad}\delta_{\nu\beta}\delta_{\mu\alpha}\\ 
 +=-\delta_{ad}\left( g_{\mu\nu}g_{\nu\mu}-g_{\mu\mu}g_{\nu\nu}\right) 
 +\end{gather*} 
 + 
 +\begin{gather*} 
 +\frac {\partial \mathcal{L}}{\partial \left(\partial^{\nu}A_a^{\mu}\right)} 
 +=-\frac 14\left(-\delta_{ad}F_{\mu\nu}^d-g_{\mu\mu}g_{\nu\nu}\delta_{ad}F_d^{\mu\nu}\right)\\ 
 +=\frac 14\left(F_{\mu\nu}^a+g_{\mu\alpha}g_{\nu\beta}F_a^{\alpha\beta}\right)\\ 
 +=\frac 14\left(F_{\mu\nu}^a+g_{\mu\alpha}g_{\nu\beta}F_a^{\alpha\beta}\right)\\ 
 +=\frac 14\left(F_{\mu\nu}^a+F^a_{\mu\nu}\right)=\frac 12F_{\mu\nu}^a 
 +\end{gather*} 
 + 
 +<-- 
 + 
 <tabbox Abstract> ​ <tabbox Abstract> ​
 The Yang-Mills equations can be expressed with the The Yang-Mills equations can be expressed with the
equations/yang_mills_equations.1522078414.txt.gz · Last modified: 2018/03/26 15:33 (external edit)