User Tools

Site Tools


equations:schroedinger_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
equations:schroedinger_equation [2020/04/10 11:40]
109.81.208.52 [Concrete]
equations:schroedinger_equation [2020/04/10 11:44]
109.81.208.52 [Concrete]
Line 67: Line 67:
  
 $$ \phi(t) = A e^{-Et/​\hbar} $$ $$ \phi(t) = A e^{-Et/​\hbar} $$
-and the second equation is known as the stationary Schrödnger equation. This means that for all systems where the Hamiltonian does not explicitly depend on the time, we known immediately ​how the time-dependence of the total wave function $\Psi(x,t)$ looks like, namely: $\Psi(x,t) = \phi(t) \psi(x) = A e^{-Et/​\hbar} \psi(x)$. The only thing we then have to do is to solve the __stationary Schrödinger equation__+and the second equation is known as the stationary Schrödnger equation. This means that for all systems where the Hamiltonian does not explicitly depend on the time, we know immediately ​what the time-dependence of the total wave function $\Psi(x,t)$ looks like, namely: $\Psi(x,t) = \phi(t) \psi(x) = A e^{-Et/​\hbar} \psi(x)$. The only thing we then have to do is to solve the __stationary Schrödinger equation__
  
 \begin{equation} \begin{equation}
equations/schroedinger_equation.txt · Last modified: 2020/11/21 01:43 by 2a01:cb15:33b:c600:f4a9:8015:b3fa:6b19