User Tools

Site Tools


equations:proca_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:proca_equation [2018/04/02 13:53]
jakobadmin [Concrete]
equations:proca_equation [2023/04/02 03:12] (current)
edi [Concrete]
Line 20: Line 20:
 The general solution for the Proca equation is The general solution for the Proca equation is
  
-\begin{equation} m^2 A^\rho = \frac{1}{2} ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \end{equation} 
-is, analogous to the spin $0$ field solution, of the form 
 \begin{align} A_\mu &​= ​ \int \frac{d^3 k}{\sqrt{ (2\pi)^3 2 \omega_k}} \left( \epsilon_{r,​\mu}(k) a_r(k) {\mathrm{e}}^{-ikx} + \epsilon_{r,​\mu}(k) a_r^\dagger(k) {\mathrm{e}}^{ikx} ​ \right) \notag \\ \begin{align} A_\mu &​= ​ \int \frac{d^3 k}{\sqrt{ (2\pi)^3 2 \omega_k}} \left( \epsilon_{r,​\mu}(k) a_r(k) {\mathrm{e}}^{-ikx} + \epsilon_{r,​\mu}(k) a_r^\dagger(k) {\mathrm{e}}^{ikx} ​ \right) \notag \\
  ​\label{eq:​aplusminus} &​\equiv ​ A_\mu^+ + A_\mu^- ​  ​\end{align}  ​\label{eq:​aplusminus} &​\equiv ​ A_\mu^+ + A_\mu^- ​  ​\end{align}
 where $\epsilon_{r,​\mu}(k)$ are basis vectors called polarization vectors. ​ where $\epsilon_{r,​\mu}(k)$ are basis vectors called polarization vectors. ​
  
 +----
 +
 +**Graphical Summary**
 +
 +The diagram below shows the Proca equation and its Lagrangian in various forms. For a more detailed explanation see [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​proca_maxwell|Fun with Symmetry]]. ​
 +
 +{{:​equations:​proca_maxwell.jpg?​nolink}}
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
equations/proca_equation.1522669981.txt.gz ยท Last modified: 2018/04/02 11:53 (external edit)