User Tools

Site Tools


equations:proca_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:proca_equation [2018/03/26 16:41]
jakobadmin
equations:proca_equation [2023/04/02 03:12] (current)
edi [Concrete]
Line 1: Line 1:
-====== Proca Equation: ​$\quad m^2 A^\rho =    \partial_\sigma F^{\sigma ​ \rho}$ ​======+<WRAP lag>$ m^2 A^\rho =    \partial_\sigma F^{\sigma ​ \rho}$</​WRAP>​
  
 +====== Proca Equation ======
  
-<tabbox Why is it interesting?> ​ 
  
-The Proca equation is a generalization of the [[equations:​maxwell_equations|Maxwell equation]] for [[basic_notions:​mass|massive]] [[basic_notions:​spin|spin]] $1$ particles. Formulated differently,​ the Maxwell equation is only a special case of the Proca equation for massless particles/​fields. ​ 
  
-The Proca equation is important because it correctly describes massive spin $1$ particles/​fields. +<​tabbox ​Intuitive
- +
-<​tabbox ​Layman+
  
 <note tip> <note tip>
Line 14: Line 11:
 </​note>​ </​note>​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
 \begin{align}m^2 A^\rho &​= ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \\ \begin{align}m^2 A^\rho &​= ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \\
 &​=\partial_\sigma F^{\sigma ​ \rho} &​=\partial_\sigma F^{\sigma ​ \rho}
 \end{align} \end{align}
-  + 
-<​tabbox ​Researcher+ 
 +The general solution for the Proca equation is 
 + 
 +\begin{align} A_\mu &​= ​ \int \frac{d^3 k}{\sqrt{ (2\pi)^3 2 \omega_k}} \left( \epsilon_{r,​\mu}(k) a_r(k) {\mathrm{e}}^{-ikx} + \epsilon_{r,​\mu}(k) a_r^\dagger(k) {\mathrm{e}}^{ikx} ​ \right) \notag \\ 
 + ​\label{eq:​aplusminus} &​\equiv ​ A_\mu^+ + A_\mu^- ​  ​\end{align} 
 +where $\epsilon_{r,​\mu}(k)$ are basis vectors called polarization vectors.  
 + 
 +---- 
 + 
 +**Graphical Summary** 
 + 
 +The diagram below shows the Proca equation and its Lagrangian in various forms. For a more detailed explanation see [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​proca_maxwell|Fun with Symmetry]].  
 + 
 +{{:​equations:​proca_maxwell.jpg?​nolink}} 
 +<​tabbox ​Abstract
  
 <note tip> <note tip>
Line 26: Line 37:
 </​note>​ </​note>​
  
 +
 +<tabbox Why is it interesting?> ​
 +
 +The Proca equation is a generalization of the [[equations:​maxwell_equations|Maxwell equation]] for [[basic_notions:​mass|massive]] [[basic_notions:​spin|spin]] $1$ particles. Formulated differently,​ the Maxwell equation is only a special case of the Proca equation for massless particles/​fields. ​
 +
 +The Proca equation is important because it correctly describes massive spin $1$ particles/​fields.
   ​   ​
 <tabbox Definitions> ​ <tabbox Definitions> ​
equations/proca_equation.1522075319.txt.gz · Last modified: 2018/03/26 14:42 (external edit)