User Tools

Site Tools


equations:proca_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
equations:proca_equation [2018/03/13 11:25]
jakobadmin created
equations:proca_equation [2023/04/02 03:12] (current)
edi [Concrete]
Line 1: Line 1:
 +<WRAP lag>$ m^2 A^\rho =    \partial_\sigma F^{\sigma ​ \rho}$</​WRAP>​
 +
 ====== Proca Equation ====== ====== Proca Equation ======
  
-<note tip> $$ m^2 A^\rho =    \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) $$  
  
--->​Definitions#​ 
  
-  * $\partial_{\sigma} $ denotes the partial derivative,​ +<tabbox Intuitive> ​
-  * $m$ denotes the mass of the particle, +
-  * $A^\rho$ is either the wave function of the spin $1$ particle if we use the Proca equation in a particle theory, or describes the spin $1$ field if we work in a field theory. ​+
  
-<--+<note tip> 
 +Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. 
 +</​note>​ 
 +   
 +<tabbox Concrete> ​
  
 +\begin{align}m^2 A^\rho &​= ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \\
 +&​=\partial_\sigma F^{\sigma ​ \rho}
 +\end{align}
  
-</​note>​ 
  
-<tabbox Why is it interesting?> ​+The general solution for the Proca equation ​is
  
-The Proca equation is a generalization of the Maxwell equation for massive spin $1$ particles. Formulated differentlythe Maxwell equation is only a special case of the Proca equation for massless particles/​fields+\begin{align} A_\mu &​= ​ \int \frac{d^3 k}{\sqrt{ (2\pi)^3 2 \omega_k}} \left( \epsilon_{r,​\mu}(k) a_r(k) {\mathrm{e}}^{-ikx} + \epsilon_{r,​\mu}(k) a_r^\dagger(k) {\mathrm{e}}^{ikx} ​ \right) \notag \\ 
 + ​\label{eq:​aplusminus} &​\equiv ​ A_\mu^+ + A_\mu^- ​  ​\end{align} 
 +where $\epsilon_{r,\mu}(k)$ are basis vectors called polarization vectors
  
-The Proca equation is important because it correctly describes massive spin $1$ particles/​fields.+----
  
-<tabbox Layman> ​+**Graphical Summary**
  
-<note tip> +The diagram below shows the Proca equation and its Lagrangian ​in various forms. For more detailed explanation see [[https://​esackinger.wordpress.com/blog/​lie-groups-and-their-representations/#​proca_maxwell|Fun with Symmetry]]. ​
-Explanations ​in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at a cocktail party. +
-</note> +
-   +
-<tabbox Student> ​+
  
-<note tip> +{{:​equations:​proca_maxwell.jpg?​nolink}} 
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. +<​tabbox ​Abstract
-</​note>​ +
-  +
-<​tabbox ​Researcher+
  
 <note tip> <note tip>
Line 38: Line 37:
 </​note>​ </​note>​
  
 +
 +<tabbox Why is it interesting?> ​
 +
 +The Proca equation is a generalization of the [[equations:​maxwell_equations|Maxwell equation]] for [[basic_notions:​mass|massive]] [[basic_notions:​spin|spin]] $1$ particles. Formulated differently,​ the Maxwell equation is only a special case of the Proca equation for massless particles/​fields. ​
 +
 +The Proca equation is important because it correctly describes massive spin $1$ particles/​fields.
   ​   ​
-<​tabbox ​Examples+<​tabbox ​Definitions
  
---> Example1# 
  
-  
-<-- 
  
---> Example2:#+  * $\partial_{\sigma} $ denotes the partial derivative,​ 
 +  * $m$ denotes the mass of the particle, 
 +  * $A^\rho$ is either the wave function of the spin $1$ particle if we use the Proca equation in a particle theory, or describes the spin $1$ field if we work in a field theory.  
 +  * $F^{\sigma ​ \rho}$ is the electromagnetic field tensor: $F^{\sigma ​ \rho} \equiv \partial^\sigma A^\rho ​ ​\partial^\rho ​ A^\sigma$. ​
  
-  
-<-- 
  
-<tabbox FAQ> ​ 
-  ​ 
-<tabbox History> ​ 
  
 </​tabbox>​ </​tabbox>​
  
  
equations/proca_equation.1520936734.txt.gz · Last modified: 2018/03/13 10:25 (external edit)