User Tools

Site Tools


equations:proca_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
equations:proca_equation [2018/03/26 16:41]
jakobadmin
equations:proca_equation [2018/04/02 13:53]
jakobadmin [Concrete]
Line 1: Line 1:
-====== Proca Equation: ​$\quad m^2 A^\rho =    \partial_\sigma F^{\sigma ​ \rho}$ ​======+<WRAP lag>$ m^2 A^\rho =    \partial_\sigma F^{\sigma ​ \rho}$</​WRAP>​
  
 +====== Proca Equation ======
  
-<tabbox Why is it interesting?> ​ 
  
-The Proca equation is a generalization of the [[equations:​maxwell_equations|Maxwell equation]] for [[basic_notions:​mass|massive]] [[basic_notions:​spin|spin]] $1$ particles. Formulated differently,​ the Maxwell equation is only a special case of the Proca equation for massless particles/​fields. ​ 
  
-The Proca equation is important because it correctly describes massive spin $1$ particles/​fields. +<​tabbox ​Intuitive
- +
-<​tabbox ​Layman+
  
 <note tip> <note tip>
Line 14: Line 11:
 </​note>​ </​note>​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
 \begin{align}m^2 A^\rho &​= ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \\ \begin{align}m^2 A^\rho &​= ​   \partial_\sigma ( \partial^\sigma A^\rho -  \partial^\rho ​ A^\sigma) \\
 &​=\partial_\sigma F^{\sigma ​ \rho} &​=\partial_\sigma F^{\sigma ​ \rho}
 \end{align} \end{align}
-  + 
-<​tabbox ​Researcher+ 
 +The general solution for the Proca equation is 
 + 
 +\begin{align} A_\mu &​= ​ \int \frac{d^3 k}{\sqrt{ (2\pi)^3 2 \omega_k}} \left( \epsilon_{r,​\mu}(k) a_r(k) {\mathrm{e}}^{-ikx} + \epsilon_{r,​\mu}(k) a_r^\dagger(k) {\mathrm{e}}^{ikx} ​ \right) \notag \\ 
 + ​\label{eq:​aplusminus} &​\equiv ​ A_\mu^+ + A_\mu^- ​  ​\end{align} 
 +where $\epsilon_{r,​\mu}(k)$ are basis vectors called polarization vectors.  
 + 
 +<​tabbox ​Abstract
  
 <note tip> <note tip>
Line 26: Line 30:
 </​note>​ </​note>​
  
 +
 +<tabbox Why is it interesting?> ​
 +
 +The Proca equation is a generalization of the [[equations:​maxwell_equations|Maxwell equation]] for [[basic_notions:​mass|massive]] [[basic_notions:​spin|spin]] $1$ particles. Formulated differently,​ the Maxwell equation is only a special case of the Proca equation for massless particles/​fields. ​
 +
 +The Proca equation is important because it correctly describes massive spin $1$ particles/​fields.
   ​   ​
 <tabbox Definitions> ​ <tabbox Definitions> ​
equations/proca_equation.txt · Last modified: 2023/04/02 03:12 by edi