User Tools

Site Tools


equations:hamilton-jacobi_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:hamilton-jacobi_equation [2018/04/15 11:48]
ida [Abstract]
equations:hamilton-jacobi_equation [2018/05/05 12:29] (current)
63.143.42.253 ↷ Links adapted because of a move operation
Line 15: Line 15:
 <​blockquote>​The Hamilton-Jacobi equation is essentially a dispersion relation for <​blockquote>​The Hamilton-Jacobi equation is essentially a dispersion relation for
 a complex wave. This is easy to see in the context of non-relativistic a complex wave. This is easy to see in the context of non-relativistic
-[[theories:​quantum_mechanics|quantum mechanics]]. If a quantum amplitude is expressed in the+[[theories:​quantum_mechanics:canonical|quantum mechanics]]. If a quantum amplitude is expressed in the
 form ψ = Rexp(iS/​h¯),​ then the Hamilton-Jacobi equation relates form ψ = Rexp(iS/​h¯),​ then the Hamilton-Jacobi equation relates
 p = ∂S/∂q to E = −∂S/​∂t by the condition p2(q) = 2m(E −V). p = ∂S/∂q to E = −∂S/​∂t by the condition p2(q) = 2m(E −V).
Line 43: Line 43:
 and and
 \[ \[
- S(q) = \int_{t_0}^{t_1} L\Bigl(q(t),​\qdot(t)\Bigr)\,​dt .+ S(q) = \int_{t_0}^{t_1} L\Bigl(q(t),​\dot{q}(t)\Bigr)\,​dt .
 \] \]
 Here $W$ is the least action for some path from $(q_0,t_0)$ to $(q_1,​t_1)$. We have Here $W$ is the least action for some path from $(q_0,t_0)$ to $(q_1,​t_1)$. We have
 \[ \[
- ​\frac{\pa}{\pa q_1^i}W(q_0,​q_1) = (p_1)_i, ​+ ​\frac{\partial}{\partial ​q_1^i}W(q_0,​q_1) = (p_1)_i, ​
 \] \]
-\[ +
-\xy +
- ​(48,​-3)*+{(q_0,​t_0)},​(50,​0)*\dir{*};​(90,​10),​  +
- ​**\crv{(60,​0)&​(70,​10)&​(85,​10)&​(90,​10)},​ +
- ​(90,​7)*+{p_1},​ (85,​10),​(85,​10) {\ar@{*\dir{*}->​} (90,10)} +
- ​\POS(79.5,​7) \ar @{-} (79.5,13) +
- ​\POS(81,​7) \ar @{-} (81,13) \POS(82.5,​7) \ar @{-} (82.5,13)  +
- ​\POS(84,​7) \ar @{-} (84,13) \POS(85.5,​7),​ +
- ​(82.5,​5)*+{(q_1,​t_1)} +
-\endxy\]+
 where $p_1$ is the momentum of the particle going from $q_0$ to $q_1$, at time $t_1$, and where $p_1$ is the momentum of the particle going from $q_0$ to $q_1$, at time $t_1$, and
-\begin{align*} +$$  ​\frac{\partial ​W}{\partial ​q_0^i}= -(p_0)_i ,​\qquad\text{(-momentum at time $t_0$)} ​$$ 
- \frac{\pa W}{\pa q_0^i}&= -(p_0)_i,​\qquad\text{(-momentum at time $t_0$)}\\ +$$ \frac{\partial ​W}{\partial ​t_1}= -H_1,​\qquad\text{(-energy at time $t_1$)} ​$$ 
- ​\frac{\pa W}{\pa t_1}&= -H_1,​\qquad\text{(-energy at time $t_1$)}\\ +$$ \frac{\partial ​W}{\partial ​t_0}= H_0,​\qquad\text{(+energy at time $t_0$)} 
- ​\frac{\pa W}{\pa t_0}&= H_0,​\qquad\text{(+energy at time $t_0$)} + $$ 
-\end{align*} + 
-($H_1=H_0$ ​as energy is conserved).  These last four equations are the Hamilton--Jacobi equations. ​+ 
 +Take note that $H_1=H_0$ ​since energy is conserved. ​ These last four equations are the Hamilton--Jacobi equations. ​
  
   ​   ​
equations/hamilton-jacobi_equation.1523785687.txt.gz · Last modified: 2018/04/15 09:48 (external edit)