User Tools

Site Tools


equations:hamilton-jacobi_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:hamilton-jacobi_equation [2018/04/08 10:56]
jakobadmin [Concrete]
equations:hamilton-jacobi_equation [2018/05/05 12:29] (current)
63.143.42.253 ↷ Links adapted because of a move operation
Line 15: Line 15:
 <​blockquote>​The Hamilton-Jacobi equation is essentially a dispersion relation for <​blockquote>​The Hamilton-Jacobi equation is essentially a dispersion relation for
 a complex wave. This is easy to see in the context of non-relativistic a complex wave. This is easy to see in the context of non-relativistic
-[[theories:​quantum_mechanics|quantum mechanics]]. If a quantum amplitude is expressed in the+[[theories:​quantum_mechanics:canonical|quantum mechanics]]. If a quantum amplitude is expressed in the
 form ψ = Rexp(iS/​h¯),​ then the Hamilton-Jacobi equation relates form ψ = Rexp(iS/​h¯),​ then the Hamilton-Jacobi equation relates
 p = ∂S/∂q to E = −∂S/​∂t by the condition p2(q) = 2m(E −V). p = ∂S/∂q to E = −∂S/​∂t by the condition p2(q) = 2m(E −V).
Line 29: Line 29:
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
-<note tip> +We consider a manifold $Q$ and a Lagrangian $L \colon TQ\rightarrow\mathbb{R}$. Now, we define Hamilton'​s principal function 
-The motto in this section ​is: //the higher ​the level of abstraction, ​the better//. +\[ 
-</note>+ W \colon Q\times\mathbb{R}\times Q\times\mathbb{R}\longrightarrow\mathbb{R} 
 +\] 
 +by 
 +\[ 
 + ​W(q_0,​t_0;​ q_1, t_1) = \inf_{q\in\Upsilon} S(q) 
 +\] 
 +where 
 +\[ 
 + ​\Upsilon=\bigl\{ q \colon [t_0,​t_1]\rightarrow Q,\, q(t_0)=q_0,​\text{ \& }q(t_1)=q_1 \bigr\} 
 +\] 
 +and 
 +\[ 
 + S(q) = \int_{t_0}^{t_1} L\Bigl(q(t),​\dot{q}(t)\Bigr)\,​dt . 
 +\] 
 +Here $W$ is the least action for some path from $(q_0,t_0)$ to $(q_1,​t_1)$. We have 
 +\[ 
 + ​\frac{\partial}{\partial q_1^i}W(q_0,​q_1) = (p_1)_i,  
 +\] 
 + 
 +where $p_1$ is the momentum ​of the particle going from $q_0$ to $q_1$, at time $t_1$, and 
 +$$  \frac{\partial W}{\partial q_0^i}= -(p_0)_i ,​\qquad\text{(-momentum at time $t_0$)} $$ 
 +$$ \frac{\partial W}{\partial t_1}= -H_1,​\qquad\text{(-energy at time $t_1$)} $$ 
 +$$ \frac{\partial W}{\partial t_0}= H_0,​\qquad\text{(+energy at time $t_0$)} 
 + $$ 
 + 
 + 
 +Take note that $H_1=H_0$ since energy is conserved. ​ These last four equations are the Hamilton--Jacobi equations. ​
  
   ​   ​
equations/hamilton-jacobi_equation.1523177810.txt.gz · Last modified: 2018/04/08 08:56 (external edit)