User Tools

Site Tools


equations:hamilton-jacobi_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
equations:hamilton-jacobi_equation [2017/11/10 16:35]
jakobadmin created
equations:hamilton-jacobi_equation [2018/05/05 12:29] (current)
63.143.42.253 ↷ Links adapted because of a move operation
Line 1: Line 1:
 ====== Hamilton-Jacobi Equation ====== ====== Hamilton-Jacobi Equation ======
  
-<tabbox Why is it interesting?> ​ 
  
-<​tabbox ​Layman+ 
 +<​tabbox ​Intuitive
  
 <note tip> <note tip>
Line 9: Line 9:
 </​note>​ </​note>​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
 For a very nice explanation of the origin of the Hamilton-Jacobi equation and its meaning see chapter 2 in Sleeping Beauties in Theoretical Physics by Thanu Padmanabhan For a very nice explanation of the origin of the Hamilton-Jacobi equation and its meaning see chapter 2 in Sleeping Beauties in Theoretical Physics by Thanu Padmanabhan
-  
-<tabbox Researcher> ​ 
  
-<note tip> +<blockquote>​The ​Hamilton-Jacobi equation ​is essentially a dispersion relation for 
-The motto in this section ​is: //the higher ​the level of abstraction, ​the better//. +a complex wave. This is easy to see in the context of non-relativistic 
-</note>+[[theories:quantum_mechanics:​canonical|quantum mechanics]]. If a quantum amplitude is expressed in the 
 +form ψ = Rexp(iS/h¯), then the Hamilton-Jacobi equation relates 
 +p = ∂S/∂q to E = −∂S/∂t by the condition p2(q) = 2m(E −V). 
 +This is a relation between ​the wave vector k = p/h¯ and the frequency 
 +ω = E/h¯ of the “matter wave” associated with the particle.<​cite>​chapter 2 in Sleeping Beauties in Theoretical Physics by Thanu Padmanabhan 
 +</cite></​blockquote>
  
-   +----
-<tabbox Examples> ​+
  
---> Example1#+Take note that while the Hamilton equation for time-evolution is closely related to the Heisenberg equation in quantum mechanics, the Hamilton-Jacobi equation is closely connected to the [[equations:​schroedinger_equation|Schrödinger equation]]. See, for example, Section 4.8.1 in [[http://​www.damtp.cam.ac.uk/​user/​tong/​dynamics/​four.pdf|Tong'​s lecture notes]]. ​
  
-  
-<-- 
  
---Example2:#+<tabbox Abstract
  
-  +We consider a manifold $Q$ and a Lagrangian $L \colon TQ\rightarrow\mathbb{R}$. Now, we define Hamilton'​s principal function 
-<--+\[ 
 + W \colon Q\times\mathbb{R}\times Q\times\mathbb{R}\longrightarrow\mathbb{R} 
 +\] 
 +by 
 +\[ 
 + ​W(q_0,​t_0;​ q_1, t_1) = \inf_{q\in\Upsilon} S(q) 
 +\] 
 +where 
 +\[ 
 + ​\Upsilon=\bigl\{ q \colon [t_0,​t_1]\rightarrow Q,\, q(t_0)=q_0,​\text{ \& }q(t_1)=q_1 \bigr\} 
 +\] 
 +and 
 +\[ 
 + S(q) = \int_{t_0}^{t_1} L\Bigl(q(t),​\dot{q}(t)\Bigr)\,​dt . 
 +\] 
 +Here $W$ is the least action for some path from $(q_0,t_0)$ to $(q_1,​t_1)$. We have 
 +\[ 
 + ​\frac{\partial}{\partial q_1^i}W(q_0,​q_1) = (p_1)_i,  
 +\] 
 + 
 +where $p_1$ is the momentum of the particle going from $q_0$ to $q_1$, at time $t_1$, and 
 +$$  \frac{\partial W}{\partial q_0^i}= -(p_0)_i ,​\qquad\text{(-momentum at time $t_0$)} $$ 
 +$$ \frac{\partial W}{\partial t_1}= -H_1,​\qquad\text{(-energy at time $t_1$)} $$ 
 +$$ \frac{\partial W}{\partial t_0}= H_0,​\qquad\text{(+energy at time $t_0$)} 
 + $$ 
 + 
 + 
 +Take note that $H_1=H_0$ since energy is conserved. ​ These last four equations are the Hamilton--Jacobi equations. ​
  
-<tabbox FAQ> ​ 
   ​   ​
-<​tabbox ​History+<​tabbox ​Why is it interesting?​
  
 </​tabbox>​ </​tabbox>​
  
  
equations/hamilton-jacobi_equation.1510328111.txt.gz · Last modified: 2017/12/04 08:01 (external edit)