User Tools

Site Tools


equations:geodesic_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:geodesic_equation [2018/04/14 10:59]
aresmarrero [Concrete]
equations:geodesic_equation [2018/12/19 11:01] (current)
jakobadmin ↷ Links adapted because of a move operation
Line 3: Line 3:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
 +Solutions of the geodesic equations are called geodesics. ​
  
-<note tip> +Geodesics are the "​shortest"​ paths between two points ​in a flat spacetime and the straightest path between two points in curved spacetime 
-Explanations ​in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party. +
-</​note>​+
   ​   ​
 +On a sphere the geodesics are "great circles"​. ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
Line 49: Line 49:
 \end{align*} \end{align*}
 where the last line follows since $g_{ik}=g_{ki}$. where the last line follows since $g_{ik}=g_{ki}$.
-Now we define the so-called [[advanced_notions:general_relativity:christoffel_symbols|Christoffel symbols]]+Now we define the so-called [[advanced_tools:connections:levi_civita_connection|Christoffel symbols]]
 \[ \[
  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)
Line 63: Line 63:
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
-<note tip> +Geodesics are paths $q:[t_0,t_1]\rightarrow Q$ that are critical points of the action 
-The motto in this section is//the higher the level of abstraction, the better//. +\[ 
-</​note>​ + S(q) = \int_{t_0}^{t_1}\sqrt{g_{ij} \dot{q}^i\dot{q}^j}\,​dt 
 +\] 
 +This action is exactly the proper time when $(Q,g)$ is a Lorentzian manifold, or arclength when $(Q,g)$ is a Riemannian manifold.
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
-  ​ 
- 
 Almost every problem in classical mechanics can be regarded as geodesic motion. Almost every problem in classical mechanics can be regarded as geodesic motion.
  
-Especially in [[models:​general_relativity|general relativity]] particles always follow geodesics. ​Geodesics are the straightest path between two points ​in a curved ​spacetime. ​+In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths. 
 + 
 +Especially in [[models:​general_relativity|general relativity]] particles always follow geodesics. ​To be precise, a free particle ​in general relativity traces out geodesic on the Lorentzian manifold, i.e. spacetime. 
 + 
 </​tabbox>​ </​tabbox>​
  
  
equations/geodesic_equation.1523696397.txt.gz · Last modified: 2018/04/14 08:59 (external edit)