User Tools

Site Tools


equations:geodesic_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
equations:geodesic_equation [2018/04/14 11:09]
aresmarrero [Why is it interesting?]
equations:geodesic_equation [2018/05/05 22:00]
jakobadmin [Concrete]
Line 3: Line 3:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
-Geodesics are the straightest path between two points in a curved spacetime.  ​+Solutions of the geodesic equations are called geodesics.  
 + 
 +Geodesics are the "​shortest"​ paths between two points in a flat spacetime and the straightest path between two points in a curved spacetime.  ​
   ​   ​
 +On a sphere the geodesics are "great circles"​. ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
Line 14: Line 17:
  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}
 \end{align*} \end{align*}
-just like in [[models:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use+just like in [[theories:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use
 \begin{align*} \begin{align*}
  ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\   ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\ 
Line 46: Line 49:
 \end{align*} \end{align*}
 where the last line follows since $g_{ik}=g_{ki}$. where the last line follows since $g_{ik}=g_{ki}$.
-Now we define the so-called [[advanced_notions:general_relativity:christoffel_symbols|Christoffel symbols]]+Now we define the so-called [[advanced_tools:connections:levi_civita_connection|Christoffel symbols]]
 \[ \[
  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)
Line 70: Line 73:
 In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths. In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths.
  
-Especially in [[models:​general_relativity|general relativity]] particles always follow geodesics. To be precise, a free particle in general relativity traces out a geodesic on the Lorentzian manifold, i.e. spacetime.+Especially in [[theories:​general_relativity|general relativity]] particles always follow geodesics. To be precise, a free particle in general relativity traces out a geodesic on the Lorentzian manifold, i.e. spacetime.
  
  
equations/geodesic_equation.txt · Last modified: 2018/12/19 11:01 by jakobadmin