User Tools

Site Tools


equations:geodesic_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
equations:geodesic_equation [2018/04/14 10:56]
aresmarrero [Concrete]
equations:geodesic_equation [2018/05/05 22:00]
jakobadmin [Concrete]
Line 3: Line 3:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
 +Solutions of the geodesic equations are called geodesics. ​
  
-<note tip> +Geodesics are the "​shortest"​ paths between two points ​in a flat spacetime and the straightest path between two points in curved spacetime 
-Explanations ​in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party. +
-</​note>​+
   ​   ​
 +On a sphere the geodesics are "great circles"​. ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
Line 17: Line 17:
  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}
 \end{align*} \end{align*}
-just like in [[models:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use+just like in [[theories:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use
 \begin{align*} \begin{align*}
  ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\   ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\ 
Line 41: Line 41:
 \begin{align*} \begin{align*}
  ​\frac{d}{dt}g_{ij}\dot{q}^j &= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\  ​\frac{d}{dt}g_{ij}\dot{q}^j &= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\
- ​\hspace{-3ex}\therefore\quad+ ​\hspace{-3ex}\rightarrow\quad
  ​\partial_{k}g_{ij}\dot{q}^k\dot{q}^j + g_{ij}\ddot{q}^j ​  ​\partial_{k}g_{ij}\dot{q}^k\dot{q}^j + g_{ij}\ddot{q}^j ​
  &​= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\  &​= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\
- ​\hspace{-3ex}\therefore\quad+ ​\hspace{-3ex}\rightarrow\quad
  ​g_{ij}\ddot{q}^j &= \bigl(\tfrac{1}{2}\partial_{i}g_{jk}-\partial_{k}g_{ij}\bigr)\dot{q}^j\dot{q}^k \\  ​g_{ij}\ddot{q}^j &= \bigl(\tfrac{1}{2}\partial_{i}g_{jk}-\partial_{k}g_{ij}\bigr)\dot{q}^j\dot{q}^k \\
  &​= \tfrac{1}{2}\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)\dot{q}^j\dot{q}^k  &​= \tfrac{1}{2}\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)\dot{q}^j\dot{q}^k
 \end{align*} \end{align*}
 where the last line follows since $g_{ik}=g_{ki}$. where the last line follows since $g_{ik}=g_{ki}$.
-Now we define the so-called Christoffel symbols+Now we define the so-called ​[[advanced_tools:​connections:​levi_civita_connection|Christoffel symbols]]
 \[ \[
  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)
Line 57: Line 57:
 \begin{align*} \begin{align*}
  ​\ddot{q}_i = g_{ij}\ddot{q}^j &= -\Gamma_{ijk}\dot{q}^j\dot{q}^k \\  ​\ddot{q}_i = g_{ij}\ddot{q}^j &= -\Gamma_{ijk}\dot{q}^j\dot{q}^k \\
- ​\hspace{-3ex}\therefore\quad+ ​\hspace{-3ex}\rightarrow\quad
  ​\ddot{q}^i &= -\Gamma^i_{jk}\dot{q}^j\dot{q}^k.  ​\ddot{q}^i &= -\Gamma^i_{jk}\dot{q}^j\dot{q}^k.
 \end{align*} \end{align*}
Line 63: Line 63:
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
-<note tip> +Geodesics are paths $q:[t_0,t_1]\rightarrow Q$ that are critical points of the action 
-The motto in this section is//the higher the level of abstraction, the better//. +\[ 
-</​note>​ + S(q) = \int_{t_0}^{t_1}\sqrt{g_{ij} \dot{q}^i\dot{q}^j}\,​dt 
 +\] 
 +This action is exactly the proper time when $(Q,g)$ is a Lorentzian manifold, or arclength when $(Q,g)$ is a Riemannian manifold.
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
-  ​ 
- 
 Almost every problem in classical mechanics can be regarded as geodesic motion. Almost every problem in classical mechanics can be regarded as geodesic motion.
  
-Especially in [[models:​general_relativity|general relativity]] particles always follow geodesics. ​Geodesics are the straightest path between two points ​in a curved ​spacetime. ​+In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths. 
 + 
 +Especially in [[theories:​general_relativity|general relativity]] particles always follow geodesics. ​To be precise, a free particle ​in general relativity traces out geodesic on the Lorentzian manifold, i.e. spacetime. 
 + 
 </​tabbox>​ </​tabbox>​
  
  
equations/geodesic_equation.txt · Last modified: 2018/12/19 11:01 by jakobadmin