User Tools

Site Tools


equations:geodesic_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
equations:geodesic_equation [2018/04/14 10:47]
aresmarrero
equations:geodesic_equation [2018/05/05 22:00]
jakobadmin [Concrete]
Line 1: Line 1:
-<WRAP lag> \ddot{q}_i =  -\Gamma_{ijk}\dot{q}^j\dot{q}^k</​WRAP>​+<WRAP lag> ​$\ddot{q}_i =  -\Gamma_{ijk}\dot{q}^j\dot{q}^k$</​WRAP>​
 ====== Geodesic Equation ====== ====== Geodesic Equation ======
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
 +Solutions of the geodesic equations are called geodesics. ​
  
-<note tip> +Geodesics are the "​shortest"​ paths between two points ​in a flat spacetime and the straightest path between two points in curved spacetime 
-Explanations ​in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party. +
-</​note>​+
   ​   ​
 +On a sphere the geodesics are "great circles"​. ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
-<note tip> +**Derivation**
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. +
-</​note>​ +
-  +
-<tabbox Abstract> ​+
  
-<note tip> +The Lagrangian for a free point particle ​in a spacetime $Q$ is  
-The motto in this section ​is: //the higher the level of abstraction, ​the better//+\begin{align*} 
-</​note>​+ ​L(q,​\dot{q}) &= m\sqrt{g(q)(\dot{q},​\dot{q})} \\  
 + &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j} 
 +\end{align*} 
 +just like in [[theories:special_relativity|special relativity]] but instead ​of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$ ​Alternatively we can use 
 +\begin{align*} 
 + ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\  
 + &​= \tfrac{1}{2}m g_{ij}\dot{q}^i\dot{q}^j 
 +\end{align*}
  
-<tabbox Why is it interesting?> ​  +We now want, as usual, to find the equations of motion. ​ Using the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]] we get
  
 +\begin{align*}
 + p_i = \frac{\partial L}{\partial\dot{q}^i} &= mg_{ij}\dot{q}^j \\
 + F_i = \frac{\partial L}{\partial q^i} 
 + &​= \frac{\partial}{\partial q^i}\Bigl(\tfrac{1}{2}mg_{jk}(q)\dot{q}^j\dot{q}^k\Bigr)\\
 + &​=\tfrac{1}{2}m\partial{i}g_{jk}\dot{q}^j\dot{q}^k,​
 + ​\quad(\text{where } \partial_i=\frac{\partial}{\partial q^i}).
 +\end{align*}
 +So the Euler--Lagrange equations say
 +\[
 + ​\frac{d}{dt}mg_{ij}\dot{q}^j = \tfrac{1}{2}m\partial_{i}g_{jk}\dot{q}^j\dot{q}^k.
 +\]
 +An important observation is that the mass factors away. Therefore, the motion is independent of the mass!  ​
 +
 +We can rewrite the geodesic equation as follows
 +\begin{align*}
 + ​\frac{d}{dt}g_{ij}\dot{q}^j &= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\
 + ​\hspace{-3ex}\rightarrow\quad
 + ​\partial_{k}g_{ij}\dot{q}^k\dot{q}^j + g_{ij}\ddot{q}^j ​
 + &​= \tfrac{1}{2}\partial_{i}g_{jk}\dot{q}^j\dot{q}^k \\
 + ​\hspace{-3ex}\rightarrow\quad
 + ​g_{ij}\ddot{q}^j &= \bigl(\tfrac{1}{2}\partial_{i}g_{jk}-\partial_{k}g_{ij}\bigr)\dot{q}^j\dot{q}^k \\
 + &​= \tfrac{1}{2}\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)\dot{q}^j\dot{q}^k
 +\end{align*}
 +where the last line follows since $g_{ik}=g_{ki}$.
 +Now we define the so-called [[advanced_tools:​connections:​levi_civita_connection|Christoffel symbols]]
 +\[
 + ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)
 +\]
 +
 +Using this definition, we can write the geodesic equation as
 +\begin{align*}
 + ​\ddot{q}_i = g_{ij}\ddot{q}^j &= -\Gamma_{ijk}\dot{q}^j\dot{q}^k \\
 + ​\hspace{-3ex}\rightarrow\quad
 + ​\ddot{q}^i &= -\Gamma^i_{jk}\dot{q}^j\dot{q}^k.
 +\end{align*}
 +
 +<tabbox Abstract> ​
 +
 +Geodesics are paths $q:​[t_0,​t_1]\rightarrow Q$ that are critical points of the action
 +\[
 + S(q) = \int_{t_0}^{t_1}\sqrt{g_{ij} \dot{q}^i\dot{q}^j}\,​dt
 +\]
 +This action is exactly the proper time when $(Q,g)$ is a Lorentzian manifold, or arclength when $(Q,g)$ is a Riemannian manifold.
 +<tabbox Why is it interesting?> ​
 Almost every problem in classical mechanics can be regarded as geodesic motion. Almost every problem in classical mechanics can be regarded as geodesic motion.
 +
 +In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths.
 +
 +Especially in [[theories:​general_relativity|general relativity]] particles always follow geodesics. To be precise, a free particle in general relativity traces out a geodesic on the Lorentzian manifold, i.e. spacetime.
 +
  
 </​tabbox>​ </​tabbox>​
  
  
equations/geodesic_equation.txt · Last modified: 2018/12/19 11:01 by jakobadmin