User Tools

Site Tools


equations:geodesic_equation

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
equations:geodesic_equation [2018/04/14 11:08]
aresmarrero [Why is it interesting?]
equations:geodesic_equation [2018/05/05 21:59]
jakobadmin [Concrete]
Line 3: Line 3:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
 +Solutions of the geodesic equations are called geodesics. ​
  
-<note tip> +Geodesics are the "​shortest"​ paths between two points ​in a flat spacetime and the straightest path between two points in curved spacetime 
-Explanations ​in this section should contain no formulas, but instead colloquial things like you would hear them during ​coffee break or at cocktail party. +
-</​note>​+
   ​   ​
 +On a sphere the geodesics are "great circles"​. ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
Line 13: Line 13:
  
 The Lagrangian for a free point particle in a spacetime $Q$ is  The Lagrangian for a free point particle in a spacetime $Q$ is 
-\begin{align*}+\begin{align}
  ​L(q,​\dot{q}) &= m\sqrt{g(q)(\dot{q},​\dot{q})} \\   ​L(q,​\dot{q}) &= m\sqrt{g(q)(\dot{q},​\dot{q})} \\ 
  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}  &​= m\sqrt{g_{ij}\dot{q}^i\dot{q}^j}
-\end{align*+\end{align} 
-just like in [[models:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use+just like in [[theories:​special_relativity|special relativity]] but instead of the [[advanced_tools:​minkowski_metric|Minkowski metric]] $\eta_{ij}$,​ we now have a general metric $g_{ij}$. ​ Alternatively we can use
 \begin{align*} \begin{align*}
  ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\   ​L(q,​\dot{q}) &= \tfrac{1}{2}m g(q)(\dot{q},​\dot{q}) \\ 
Line 49: Line 49:
 \end{align*} \end{align*}
 where the last line follows since $g_{ik}=g_{ki}$. where the last line follows since $g_{ik}=g_{ki}$.
-Now we define the so-called [[advanced_notions:general_relativity:christoffel_symbols|Christoffel symbols]]+Now we define the so-called [[advanced_tools:connections:levi_civita_connection|Christoffel symbols]]
 \[ \[
  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)  ​\Gamma_{ijk} \equiv -\bigl(\partial_{i}g_{jk}-\partial_{k}g_{ij}-\partial_{j}g_{ki}\bigr)
Line 69: Line 69:
 This action is exactly the proper time when $(Q,g)$ is a Lorentzian manifold, or arclength when $(Q,g)$ is a Riemannian manifold. This action is exactly the proper time when $(Q,g)$ is a Lorentzian manifold, or arclength when $(Q,g)$ is a Riemannian manifold.
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
-  ​+Almost every problem in classical mechanics can be regarded as geodesic motion.
  
-Almost every problem in classical mechanics can be regarded as geodesic motion.+In the geometric optics approximation light acts like particles tracing out geodesics, i.e. the shortest paths.
  
-Especially in [[models:​general_relativity|general relativity]] particles always follow geodesics. To be precise, a free particle in general relativity traces out a geodesic on the Lorentzian manifold, i.e. spacetime.+Especially in [[theories:​general_relativity|general relativity]] particles always follow geodesics. To be precise, a free particle in general relativity traces out a geodesic on the Lorentzian manifold, i.e. spacetime.
  
  
equations/geodesic_equation.txt · Last modified: 2018/12/19 11:01 by jakobadmin