User Tools

Site Tools


equations:euler_lagrange_equations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:euler_lagrange_equations [2018/03/27 09:07]
jakobadmin [Concrete]
equations:euler_lagrange_equations [2018/04/08 16:13] (current)
jakobadmin ↷ Links adapted because of a move operation
Line 1: Line 1:
-====== Euler-Lagrange Equations: ​$\quad \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 $ ======+<WRAP lag>$ \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 $</​WRAP>​
  
 +====== Euler-Lagrange Equations ======
  
-//see also [[frameworks:​lagrangian_formalism|]]//+ 
 +//see also [[formalisms:​lagrangian_formalism]]//​
  
  
Line 12: Line 14:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +The Euler-Lagrange equation tells us which path is the path with minimal action $S =  \int_{t_i}^{t_f} dt L(q,​\dot{q})$,​ where $L(q,​\dot{q})$ denotes the [[formalisms:​lagrangian_formalism|Lagrangian]]. ​
  
-$$ \text{For particles: } \frac{\partial L}{\partial q_i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q_i}} = 0 \qquad ​\text{For fields: } \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 $$+ 
 +$$ \text{For particles: } \frac{\partial L}{\partial q_i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q_i}} = 0 . $$ 
 + 
 +The Euler-Lagrange equation can also be used in a field theory and there it tells us which sequence of field configurations has minimal action.  
 + 
 +$$  ​\text{For fields: } \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 .$$ 
 + 
 +The general procedure is that we start with a Lagrangian. The Lagrangian is an object that has to be guessed by making use of symmetry considerations and characterizes the system in question. Then we put the Lagrangian into the Euler-Lagrange equation and this gives us the equations of motion of the system.  ​
  
 ---- ----
Line 44: Line 54:
 \partial q} = 0 \partial q} = 0
 \end{eqnarray} \end{eqnarray}
 +This is the Euler-Lagrange equation. ​
  
 +Generalized to multiple coordinates $q_i$ ($i=1,​\ldots,​n$) it reads 
 +\begin{eqnarray} 
 +{d \over dt} {\partial L \over \partial \dot{q}_i} - {\partial L \over 
 +\partial q_i} = 0  
 +\end{eqnarray}
  
  
  
 <tabbox Abstract> ​ <tabbox Abstract> ​
 +Given a Lagrangian function $L:​T\mathcal{Q} \longrightarrow \mathbb{R}$,​ the //Lagrange expression //, denoted as $[]$ is given by:
 +$$
 +[L] = \frac{\partial L}{\partial q} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}} =   ​\frac{\partial L}{\partial q^i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}^i}
 +$$ 
 +
 +where $q\in\mathcal{Q}$ and $\dot q$ represents the lift of $q$ to the tangent bundle, i.e $(q, \dot q)\in T\mathcal Q$. You can think of $\dot{q}$ as the vector on the point  $q$.
 +
 +----
 +
  
 <​blockquote>​ <​blockquote>​
Line 95: Line 119:
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
  
-The Euler-Lagrange equations are used in the [[frameworks:​lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​+The Euler-Lagrange equations are used in the [[formalisms:​lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​
  
 </​tabbox>​ </​tabbox>​
  
  
equations/euler_lagrange_equations.1522134426.txt.gz · Last modified: 2018/03/27 07:07 (external edit)