User Tools

Site Tools


equations:euler_lagrange_equations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:euler_lagrange_equations [2017/12/21 10:52]
jakobadmin [Researcher]
equations:euler_lagrange_equations [2018/04/08 16:13] (current)
jakobadmin ↷ Links adapted because of a move operation
Line 1: Line 1:
 +<WRAP lag>$ \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 $</​WRAP>​
 +
 ====== Euler-Lagrange Equations ====== ====== Euler-Lagrange Equations ======
  
-<tabbox Why is it interesting?> ​ 
  
-The Euler-Lagrange equations are used in the [[frameworks:​lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​+//see also [[formalisms:​lagrangian_formalism]]//
  
  
 +<tabbox Intuitive> ​
  
-<tabbox Layman> ​+The basic idea behind the Lagrangian formalism is that nature is guided by a principle of "​minimal action"​. The Euler-Lagrange equations give the path with a minimal amount of "​action"​ that a system follows. ​
  
-The basic idea behind the Lagrangian formalism is that nature is guided by a principle of "​minimal action"​. The Euler-Lagrange equations gives the path with a minimal amount of "​action"​ that a system follows.  +In principlethere are many possible paths how some given particle or multiple particles could get from some point $A$ to another point $B$. The Euler-Lagrange equations are used to calculate the correct path that a particle follows between $A$ and $B$.  ​
- +
-In principle there are many possible paths how some given particle or multiple particles could get from some point $A$ to another point $B$. The Euler-Lagrange equations are used to calculate the correct path that a particle follows between $A$ and $B$.  ​+
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete 
 +The Euler-Lagrange equation tells us which path is the path with minimal action $S =  \int_{t_i}^{t_f} dt L(q,​\dot{q})$,​ where $L(q,​\dot{q})$ denotes the [[formalisms:​lagrangian_formalism|Lagrangian]].  
 + 
 + 
 +$$ \text{For particles: } \frac{\partial L}{\partial q_i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q_i}} = 0 . $$ 
 + 
 +The Euler-Lagrange equation can also be used in a field theory and there it tells us which sequence of field configurations has minimal action.  
 + 
 +$$  \text{For fields: } \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 .$$ 
 + 
 +The general procedure is that we start with a Lagrangian. The Lagrangian is an object that has to be guessed by making use of symmetry considerations and characterizes the system in question. Then we put the Lagrangian into the Euler-Lagrange equation and this gives us the equations of motion of the system. ​  
 + 
 +---- 
 + 
 +**Derivation** 
 + 
 +We consider an arbitrary path $(q,​\dot{q})$. ​ If it is the 
 +path that minimizes the action, we have 
 +\begin{eqnarray} 
 +0 &=& \delta S = \delta \int_{t_i}^{t_f} dt L(q,​\dot{q}) = 
 +\int_{t_i}^{t_f} dt L(q+\delta q,​\dot{q}+\delta \dot{q})-S ​ \\ 
 +&=& \int_{t_i}^{t_f} dtL(q,​\dot{q}) + \int_{t_i}^{t_f} dt\bigg(\delta q 
 +{\partial L \over \partial q} + \delta \dot{q} {\partial L \over 
 +\partial \dot{q}} \bigg) - S \\ 
 +&=& \int_{t_i}^{t_f} dt \bigg(\delta q {\partial L \over \partial q} + 
 +{\partial L \over \partial \dot{q}} {d \over dt} \delta q\bigg) 
 +\end{eqnarray} 
 +If we now integrate the second term by parts, and take the variation of 
 +$\delta q$ to be $0$ at $t_i$ and $t_f$,  
 +\begin{eqnarray} 
 +\delta S = \int_{t_i}^{t_f} dt \bigg(\delta q{\partial L \over \partial 
 +q} - \delta q {d \over dt} {\partial L \over \partial \dot{q}} \bigg) = 
 +\int_{t_i}^{t_f} dt \delta q \bigg({\partial L \over \partial q} - {d 
 +\over dt} {\partial L \over \partial \dot{q}} \bigg) = 0  
 +\end{eqnarray} 
 +Now, the only way this holds for an arbitrary variation $\delta q$ 
 +of the path $(q,​\dot{q})$ is when 
 +\begin{eqnarray} 
 +{d \over dt}{\partial L \over \partial \dot{q}} - {\partial L \over 
 +\partial q} = 0 
 +\end{eqnarray} 
 +This is the Euler-Lagrange equation.  
 + 
 +Generalized to multiple coordinates $q_i$ ($i=1,​\ldots,​n$) it reads 
 +\begin{eqnarray} 
 +{d \over dt} {\partial L \over \partial \dot{q}_i} - {\partial L \over 
 +\partial q_i} = 0  
 +\end{eqnarray} 
 + 
 + 
 + 
 +<tabbox Abstract>​  
 +Given a Lagrangian function $L:​T\mathcal{Q} \longrightarrow \mathbb{R}$,​ the //Lagrange expression //, denoted as $[]$ is given by: 
 +$$ 
 +[L] = \frac{\partial L}{\partial q} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}} =   ​\frac{\partial L}{\partial q^i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}^i} 
 +$$  
 + 
 +where $q\in\mathcal{Q}$ and $\dot q$ represents the lift of $q$ to the tangent bundle, i.e $(q, \dot q)\in T\mathcal Q$. You can think of $\dot{q}$ as the vector on the point  $q$. 
 + 
 +----
  
-<note tip> 
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. 
-</​note>​ 
-  
-<tabbox Researcher> ​ 
  
 <​blockquote>​ <​blockquote>​
Line 63: Line 117:
   * Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley,​ Reading, MA, 1981.   * Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley,​ Reading, MA, 1981.
   ​   ​
-<​tabbox ​Examples+<​tabbox ​Why is it interesting?​
  
---> Example1# +The Euler-Lagrange equations are used in the [[formalisms:lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​
- +
-  +
-<-- +
- +
---> Example2:+
- +
-  +
-<-- +
-   +
-<tabbox History> ​+
  
 </​tabbox>​ </​tabbox>​
  
  
equations/euler_lagrange_equations.1513849961.txt.gz · Last modified: 2017/12/21 09:52 (external edit)