User Tools

Site Tools


equations:euler_lagrange_equations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:euler_lagrange_equations [2017/11/15 10:02]
jakobadmin [Researcher]
equations:euler_lagrange_equations [2018/04/08 16:13] (current)
jakobadmin ↷ Links adapted because of a move operation
Line 1: Line 1:
 +<WRAP lag>$ \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 $</​WRAP>​
 +
 ====== Euler-Lagrange Equations ====== ====== Euler-Lagrange Equations ======
  
-<tabbox Why is it interesting?> ​ 
  
-The Euler-Lagrange equations are used in the [[frameworks:​lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​+//see also [[formalisms:​lagrangian_formalism]]//
  
  
 +<tabbox Intuitive> ​
  
-<tabbox Layman> ​+The basic idea behind the Lagrangian formalism is that nature is guided by a principle of "​minimal action"​. The Euler-Lagrange equations give the path with a minimal amount of "​action"​ that a system follows. ​
  
-The basic idea behind the Lagrangian formalism is that nature is guided by a principle of "​minimal action"​. The Euler-Lagrange equations gives the path with a minimal amount of "​action"​ that a system follows.  +In principlethere are many possible paths how some given particle or multiple particles could get from some point $A$ to another point $B$. The Euler-Lagrange equations are used to calculate the correct path that a particle follows between $A$ and $B$.  ​
- +
-In principle there are many possible paths how some given particle or multiple particles could get from some point $A$ to another point $B$. The Euler-Lagrange equations are used to calculate the correct path that a particle follows between $A$ and $B$.  ​+
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete 
 +The Euler-Lagrange equation tells us which path is the path with minimal action $S =  \int_{t_i}^{t_f} dt L(q,​\dot{q})$,​ where $L(q,​\dot{q})$ denotes the [[formalisms:​lagrangian_formalism|Lagrangian]].  
 + 
 + 
 +$$ \text{For particles: } \frac{\partial L}{\partial q_i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q_i}} = 0 . $$ 
 + 
 +The Euler-Lagrange equation can also be used in a field theory and there it tells us which sequence of field configurations has minimal action.  
 + 
 +$$  \text{For fields: } \frac{\partial \mathscr{L}}{\partial \Phi^i} - \partial_\mu \left(\frac{\partial \mathscr{L}}{\partial(\partial_\mu\Phi^i)}\right) = 0 .$$ 
 + 
 +The general procedure is that we start with a Lagrangian. The Lagrangian is an object that has to be guessed by making use of symmetry considerations and characterizes the system in question. Then we put the Lagrangian into the Euler-Lagrange equation and this gives us the equations of motion of the system. ​  
 + 
 +---- 
 + 
 +**Derivation** 
 + 
 +We consider an arbitrary path $(q,​\dot{q})$. ​ If it is the 
 +path that minimizes the action, we have 
 +\begin{eqnarray} 
 +0 &=& \delta S = \delta \int_{t_i}^{t_f} dt L(q,​\dot{q}) = 
 +\int_{t_i}^{t_f} dt L(q+\delta q,​\dot{q}+\delta \dot{q})-S ​ \\ 
 +&=& \int_{t_i}^{t_f} dtL(q,​\dot{q}) + \int_{t_i}^{t_f} dt\bigg(\delta q 
 +{\partial L \over \partial q} + \delta \dot{q} {\partial L \over 
 +\partial \dot{q}} \bigg) - S \\ 
 +&=& \int_{t_i}^{t_f} dt \bigg(\delta q {\partial L \over \partial q} + 
 +{\partial L \over \partial \dot{q}} {d \over dt} \delta q\bigg) 
 +\end{eqnarray} 
 +If we now integrate the second term by parts, and take the variation of 
 +$\delta q$ to be $0$ at $t_i$ and $t_f$,  
 +\begin{eqnarray} 
 +\delta S = \int_{t_i}^{t_f} dt \bigg(\delta q{\partial L \over \partial 
 +q} - \delta q {d \over dt} {\partial L \over \partial \dot{q}} \bigg) = 
 +\int_{t_i}^{t_f} dt \delta q \bigg({\partial L \over \partial q} - {d 
 +\over dt} {\partial L \over \partial \dot{q}} \bigg) = 0  
 +\end{eqnarray} 
 +Now, the only way this holds for an arbitrary variation $\delta q$ 
 +of the path $(q,​\dot{q})$ is when 
 +\begin{eqnarray} 
 +{d \over dt}{\partial L \over \partial \dot{q}} - {\partial L \over 
 +\partial q} = 0 
 +\end{eqnarray} 
 +This is the Euler-Lagrange equation.  
 + 
 +Generalized to multiple coordinates $q_i$ ($i=1,​\ldots,​n$) it reads 
 +\begin{eqnarray} 
 +{d \over dt} {\partial L \over \partial \dot{q}_i} - {\partial L \over 
 +\partial q_i} = 0  
 +\end{eqnarray} 
 + 
 + 
 + 
 +<tabbox Abstract>​  
 +Given a Lagrangian function $L:​T\mathcal{Q} \longrightarrow \mathbb{R}$,​ the //Lagrange expression //, denoted as $[]$ is given by: 
 +$$ 
 +[L] = \frac{\partial L}{\partial q} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}} =   ​\frac{\partial L}{\partial q^i} - \frac{d }{d t}\frac{\partial L}{\partial \dot{q}^i} 
 +$$  
 + 
 +where $q\in\mathcal{Q}$ and $\dot q$ represents the lift of $q$ to the tangent bundle, i.e $(q, \dot q)\in T\mathcal Q$. You can think of $\dot{q}$ as the vector on the point  $q$. 
 + 
 +----
  
-<note tip> 
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. 
-</​note>​ 
-  
-<tabbox Researcher> ​ 
-  * http://​www.project-tartarus.com/​2017/​07/​the-euler-lagrange-equation-and-the-principle-of-least-action/​ 
-  * Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley,​ Reading, MA, 1981. 
  
 <​blockquote>​ <​blockquote>​
Line 57: Line 109:
 into variation of the fields themselves. Here we do not consider this under the integral, and hence the boundary terms arising from the into variation of the fields themselves. Here we do not consider this under the integral, and hence the boundary terms arising from the
 would-be partial integration show up as the contribution $\Theta$.<​cite>​https://​arxiv.org/​abs/​1601.05956</​cite></​blockquote>​ would-be partial integration show up as the contribution $\Theta$.<​cite>​https://​arxiv.org/​abs/​1601.05956</​cite></​blockquote>​
-  ​ 
-<tabbox Examples> ​ 
  
---> Example1# 
  
-  +----
-<--+
  
---> Example2:# 
  
-  +  * http://​www.project-tartarus.com/​2017/​07/​the-euler-lagrange-equation-and-the-principle-of-least-action/​ 
-<--+  * Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981.
   ​   ​
-<​tabbox ​History+<​tabbox ​Why is it interesting?​ 
 + 
 +The Euler-Lagrange equations are used in the [[formalisms:​lagrangian_formalism|Lagrange formalism]] to derive from a given Lagrangian the corresponding equations of motion. ​
  
 </​tabbox>​ </​tabbox>​
  
  
equations/euler_lagrange_equations.1510736521.txt.gz · Last modified: 2017/12/04 08:01 (external edit)