User Tools

Site Tools


equations:einstein_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
equations:einstein_equation [2018/03/13 11:13]
jakobadmin
equations:einstein_equation [2018/05/13 09:17]
jakobadmin ↷ Links adapted because of a move operation
Line 1: Line 1:
-====== Einstein Equation ======+<WRAP lag>$ G_{\mu \nu} 8 \pi G T_{\mu \nu}$</​WRAP>​
  
-<note tip>$$ G_{\mu \nu} 8 \pi G T_{\mu \nu}$$ ​+====== Einstein Equation ​ ======
  
--->​Definitions#​ +//see also [[theories:​general_relativity]] //
-On the __right-hand side__, Newton'​s gravitational constant $G$, the speed of light $c$ and the stress-energy tensor $T_{\mu \nu}$.+
  
-On the __left-hand side__, the Einstein tensor $G_{\mu \nu}$ is defined as a sum of the Ricci Tensor $R_{\mu\nu}$ and the trace of the Ricci tensor, called Ricci scalar ​ $R =R_{\nu}^\nu$ 
-\begin{equation} G_{\mu \nu} = R_{\mu\nu}-\frac{1}{2}Rg_{\mu \nu} \end{equation} 
-where the Ricci Tensor $R_{\mu\nu}$ is defined in terms of the Christoffel symbols $\Gamma^\mu_{\nu \rho}$ 
  
-\begin{equation} +<tabbox Intuitive> ​
-    R_{\alpha\beta} =  \partial_{\rho}{\Gamma^\rho_{\beta\alpha}} - \partial_{\beta}\Gamma^\rho_{\rho\alpha} + \Gamma^\rho_{\rho\lambda} \Gamma^\lambda_{\beta\alpha} - \Gamma^\rho_{\beta\lambda}\Gamma^\lambda_{\rho\alpha} \end{equation} +
-and the Christoffel Symbols are defined in terms of the metric +
-\begin{equation}  +
- ​\Gamma_{\alpha \beta \rho} =\frac12 \left(\frac{\partial g_{\alpha \beta}}{\partial x^\rho} + \frac{\partial g_{\alpha \rho}}{\partial x^\beta} - \frac{\partial g_{\beta \rho}}{\partial x^\alpha} \right) = \frac12\, \left(\partial_{\rho}g_{\alpha \beta} + \partial_{\beta}g_{\alpha \rho} - \partial_{\alpha}g_{\beta \rho}\right). ​ \end{equation} +
-<--+
  
-</​note>​+Einstein'​s equation describes how spacetime gets curved through mass and energy. ​
  
-<tabbox Why is it interesting?>​  +-----
- +
-The Einstien equation is the fundamental equation of general relativity. It describes how spacetime is curved through the presence of matter and energy. +
- +
-<tabbox Layman> ​+
  
  
   * [[http://​jakobschwichtenberg.com/​how-to-invent-general-relativity/​|How to Invent General Relativity]] by J. Schwichtenberg ​   * [[http://​jakobschwichtenberg.com/​how-to-invent-general-relativity/​|How to Invent General Relativity]] by J. Schwichtenberg ​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
   * [[http://​math.ucr.edu/​home/​baez/​einstein/​einstein.pdf|The Meaning of Einstein’s Equation]] by John C. Baez and Emory F. Bunn explains the Einstein equations perfectly. ​   * [[http://​math.ucr.edu/​home/​baez/​einstein/​einstein.pdf|The Meaning of Einstein’s Equation]] by John C. Baez and Emory F. Bunn explains the Einstein equations perfectly. ​
Line 34: Line 21:
 ---- ----
  
-The static limit of the Einstein equation is known as [[equations:​newtons_law|Newton'​s law]]. ​+The static limit of the Einstein equation is known as [[formulas:​newtons_law|Newton'​s law]]. ​
  
-<​tabbox ​Researcher+<​tabbox ​Abstract
  
 <note tip> <note tip>
Line 42: Line 29:
 </​note>​ </​note>​
  
---Common Question 1#+<tabbox Why is it interesting?​
  
-  +The Einstein equation is the fundamental equation of general relativity. It describes how spacetime is curved through the presence of matter and energy.
-<--+
  
---Common Question 2#+<tabbox Definitions>
  
-  
-<-- 
-  ​ 
-<tabbox Examples> ​ 
  
---> Example1#+On the __right-hand side__, Newton'​s gravitational constant $G$, the speed of light $c$ and the stress-energy tensor $T_{\mu \nu}$.
  
-  +On the __left-hand side__, the Einstein tensor $G_{\mu \nu}$ is defined as a sum of the Ricci Tensor $R_{\mu\nu}$ and the trace of the Ricci tensor, called Ricci scalar ​ $R =R_{\nu}^\nu$ 
-<--+\begin{equation} G_{\mu \nu} = R_{\mu\nu}-\frac{1}{2}Rg_{\mu \nu} \end{equation} 
 +where the Ricci Tensor $R_{\mu\nu}$ is defined in terms of the Christoffel symbols $\Gamma^\mu_{\nu \rho}$
  
---> Example2:# +\begin{equation} 
- +    R_{\alpha\beta} =  \partial_{\rho}{\Gamma^\rho_{\beta\alpha}} ​\partial_{\beta}\Gamma^\rho_{\rho\alpha} + \Gamma^\rho_{\rho\lambda} \Gamma^\lambda_{\beta\alpha} ​\Gamma^\rho_{\beta\lambda}\Gamma^\lambda_{\rho\alpha} \end{equation} 
-  +and the Christoffel Symbols are defined in terms of the metric 
-<-- +\begin{equation} ​ 
-   + \Gamma_{\alpha \beta \rho} =\frac12 \left(\frac{\partial g_{\alpha \beta}}{\partial x^\rho} + \frac{\partial g_{\alpha \rho}}{\partial x^\beta} ​\frac{\partial g_{\beta \rho}}{\partial x^\alpha} \right) = \frac12\, \left(\partial_{\rho}g_{\alpha \beta} + \partial_{\beta}g_{\alpha \rho} \partial_{\alpha}g_{\beta \rho}\right). ​ \end{equation}
-<tabbox History> ​+
  
 </​tabbox>​ </​tabbox>​
  
  
equations/einstein_equation.txt · Last modified: 2018/12/19 11:00 by jakobadmin