User Tools

Site Tools


equations:dirac_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
equations:dirac_equation [2018/03/26 17:16]
jakobadmin
equations:dirac_equation [2018/03/28 10:24]
jakobadmin
Line 1: Line 1:
-====== Dirac Equation: ​\quad (i\gamma_\mu \partial^\mu - m ) \Psi =0 $ ======+<WRAP lag> (i\gamma_\mu \partial^\mu - m ) \Psi =0 $</​WRAP>​ 
 + 
 +====== Dirac Equation ​======
  
  
Line 41: Line 43:
   * $\partial _{\mu} $ denotes the partial derivative and $ \gamma_{\mu} \partial^{\mu}$ stands for a sum using the Einstein sum convention, i.e. $\gamma_{\mu} \partial ^{\mu} =  \gamma_0 \partial^0 - \gamma_1 \partial^1 -\gamma_2 \partial^2 -\gamma_3 \partial^3$,​   * $\partial _{\mu} $ denotes the partial derivative and $ \gamma_{\mu} \partial^{\mu}$ stands for a sum using the Einstein sum convention, i.e. $\gamma_{\mu} \partial ^{\mu} =  \gamma_0 \partial^0 - \gamma_1 \partial^1 -\gamma_2 \partial^2 -\gamma_3 \partial^3$,​
   * $m$ denotes the mass of the particle,   * $m$ denotes the mass of the particle,
-  * $\Psi$ is either the wave function of the spin $1/2$ particle if we use the Dirac equation in a particle theory, or describes the spin $1/2$ field if we work in a field theory,+  * $\Psi$ is either the wave function of the spin $1/2$ particle if we use the Dirac equation in a particle theory, or describes the spin $1/2$ field if we work in a field theory. In any case$\Psi$ is not a vector but a [[advanced_tools:​spinors|spinor]]. ​
   * $\gamma_\mu$ are the Dirac gamma matrices.   * $\gamma_\mu$ are the Dirac gamma matrices.
   ​   ​
equations/dirac_equation.txt · Last modified: 2023/04/02 03:11 by edi