User Tools

Site Tools


equations:continuity_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
equations:continuity_equation [2018/04/19 09:25]
jakobadmin [Concrete]
equations:continuity_equation [2020/03/03 10:38] (current)
128.179.254.165
Line 1: Line 1:
-<WRAP lag> $\color{blue}{\frac{\partial \rho}{\partial t}}  ​\color{magenta}{\rho \vec \nabla ​ \vec v} = \color{red}{\sigma} $</​WRAP>​+<WRAP lag> $\color{blue}{\frac{\partial \rho}{\partial t}}  ​= \color{red}{\sigma} - \color{magenta}{\rho \vec{\nabla} \cdot \vec{v}} $</​WRAP>​
  
 ====== Continuity Equation ====== ====== Continuity Equation ======
Line 5: Line 5:
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
  
-The continuity equation states that the $\color{red}{\text{total amount of a quantity (like water) that is produced (or destroyed) inside some volume}}$ is proportional to the $\color{blue}{\text{change of the quantity}}$ plus the $\color{magenta}{\text{total amount that flows in minus the amount that flows out of the volume}}$.  +The continuity equation states that the total $\color{blue}{\text{change of some quantity}}$ is equal to the $\color{red}{\text{amount that gets produced}}$ ​minus the amount that $\color{magenta}{\text{flows out of the volume}}$.
- +
-Or formulated differently, ​the total $\color{blue}{\text{change of some quantity}}$ is equal to the $\color{red}{\text{amount that gets produced}}$ ​plus the amount that $\color{magenta}{\text{flows in minus the amount that flows out of the volume}}$.+
  
 [{{ :​equations:​venturi.gif?​nolink |Image by Thierry Dugnolle}}] [{{ :​equations:​venturi.gif?​nolink |Image by Thierry Dugnolle}}]
Line 15: Line 13:
 Whenever a system possesses some symmetry we know from [[theorems:​noethers_theorems|Noether'​s theorem]] that some corresponding quantity is conserved. Using Noether'​s theorem, we can then also derive the corresponding continuity equation that describes how the conserved quantity flows through the system. Whenever a system possesses some symmetry we know from [[theorems:​noethers_theorems|Noether'​s theorem]] that some corresponding quantity is conserved. Using Noether'​s theorem, we can then also derive the corresponding continuity equation that describes how the conserved quantity flows through the system.
  
 +----
  
 +**Recommended further reading**
 +
 +  * [[https://​www.wired.com/​2016/​08/​perfection-continuity-equation-key-foundations-reality/​|The Perfection of the Continuity Equation, Key to the Foundations of Reality]] by WIRED magazine
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
Line 37: Line 39:
 $$ \nabla \cdot  J  + \frac { \partial ( \nabla \cdot  D  ) } { \partial t } = 0. $$ \nabla \cdot  J  + \frac { \partial ( \nabla \cdot  D  ) } { \partial t } = 0.
 $$ $$
-Finally, we use another [[equations:​maxwell_equations|Maxwell equation]], namely [[equations:​yang_mills_equations:​gauss_law|Gauss law]], ​+Finally, we use another [[equations:​maxwell_equations|Maxwell equation]], namely [[formulas:​gauss_law|Gauss law]], ​
 $$\nabla \cdot  D  = \rho $$\nabla \cdot  D  = \rho
  $$  $$
Line 48: Line 50:
 -->​Derivation of the continuity equation in quantum mechanics# -->​Derivation of the continuity equation in quantum mechanics#
  
 +The probability density is quantum mechanics is $\rho = \Psi^* \Psi$. The partial derivative of $\rho$ with respect to time is therefore
 +$$ \frac { \partial \rho } { \partial t } = \frac { \partial | \Psi | ^ { 2} } { \partial t } = \frac { \partial } { \partial t } ( \Psi ^ { * } \Psi ) = \Psi ^ { * } \frac { \partial \Psi } { \partial t } + \Psi \frac { \partial \Psi ^ { * } } { \partial t } . $$
  
 +Next, we consider the [[equations:​schroedinger_equation|Schrödinger equation]]
 +
 +$$ - \frac { \hbar ^ { 2} } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi ^ { * } = - i \hbar \frac { \partial \Psi ^ { * } } { \partial t }.$$
 +
 +Taking the complex conjugate of it yields
 +
 +$$- \frac { \hbar ^ { 2} } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi ^ { * } = - i \hbar \frac { \partial \Psi ^ { * } } { \partial t }. $$
 +
 +Multiplying the Schrödinger equation with $\Psi^\star$ and the complex conjugated Schrödinger equation with $\Psi$ yields the two equations
 +
 +$$ \Psi \cdot \frac { \partial \Psi } { \partial t } = \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi ^ { * } } { 2m } \nabla ^ { 2} \Psi + U \Psi ^ { * } \Psi ]$$
 +$$ \Psi \frac { \partial \Psi ^ { * } } { \partial t } = - \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi \Psi ^ { * } ] .$$
 +
 +Putting these two equations into our equation for $\frac { \partial \rho } { \partial t }$ from above yields
 +$$ \frac { \partial \rho } { \partial t } = \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi ^ { * } } { 2m } \nabla ^ { 2} \Psi + U \Psi ^ { * } \Psi ] - \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi \Psi ^ { * } ]$$
 +$$ = \frac { \hbar } { 2i m } [ \Psi \nabla ^ { 2} \Psi ^ { * } - \Psi ^ { * } \nabla ^ { 2} \Psi ] .$$
 +
 +The second puzzle piece that appears in the continuity equation is the current $j$ which in quantum mechanics is given by
 +$$j =  \frac { \hbar } { 2m i } [ \Psi ^ { * } ( \nabla \Psi ) - \Psi ( \nabla \Psi ^ { * } )]$. $$
 +Taking the divergence of it (since $\nabla j$ is what appears in the continuity equation) ​ yields
 +$$ \nabla \cdot j = \nabla \cdot [ \frac { \hbar } { 2m i } ( \Phi ^ { * } ( \nabla \Phi ) - \Psi ( \nabla \Psi ^ { * } ) ) ]
 + $$
 +$$ = - \frac { \hbar } { 2m i } [ \Psi ( \nabla ^ { 2} \Psi ^ { * } ) - \Psi ^ { * } ( \nabla ^ { 2} \Psi ) ]. $$
 +
 +This is exactly, except for the minus sign what we derived above for $\frac { \partial \rho } { \partial t }$ and therefore we can conclude
 +
 +$$ \frac { \partial \rho } { \partial t } = - \nabla \cdot j $$
 +$$ \therefore \frac { \partial \rho } { \partial t } +  \nabla \cdot j =0. $$
 +
 +This is exactly the continuity equation that we wanted to derive.
 <-- <--
 +
 +----
 +
 +**Integral Form of the continuity equation**
 +
 +By integrating the continuity equation over some volume $V$, we get
 +
 +$$ \int_V \frac { \partial \rho } { \partial t } +  \int_V \nabla \cdot j =0  $$
 +
 +For the second term, we can then use [[basic_tools:​vector_calculus:​gauss_theorem|Gauss divergence theorem]] that tells us that we can replace the volume integral over some divergence by a surface integral
 +
 +$$ \int_V \frac { \partial \rho } { \partial t } +  \int_S ​ j =0 , $$
 +
 +where $S$ denotes the surface of our volume $V$. This is the integral form of the continuity equation.
 +
 +  * The first term simply describes the total amount of the quantity, e.g. electric charge or mass, inside our volume. ​
 +  * The second term describes the amount that flows into the surface minus the amount that flows out of the surface.
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
-<note tip> +In relativistic theories, the charge density and the current live in one object called ​the current four-vector (or four-current) $j_\mu = (c \rho, \vec j),$ where $c$ denotes ​the speed of light and is inserted such that all components have the same dimensions. Using this definition, the continuity equation reads 
-The motto in this section is: //the higher ​the level of abstraction, the better//+ 
-</​note>​+$$ \partial_\mu j^\mu = 0$$ 
 + 
 +The continuity equation can also be written using the [[advanced_tools:​differential_forms|3-form]] of charge density 
 + 
 +$$ d \gamma = 0$$
  
 +where
 +$$ \gamma ​ = - \frac { 1} { c } ( 1,d x ^ { 2} \wedge d x ^ { 3} + i _ { 2} d x ^ { 3} \wedge d x ^ { 1} + j _ { 3} d x ^ { 1} \wedge d x ^ { 2} ) \wedge d x ^ { 0} + \rho d x ^ { \prime } \wedge d x ^ { 2} \wedge d x ^ { 3}.$$
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
   ​   ​
equations/continuity_equation.1524122700.txt.gz · Last modified: 2018/04/19 07:25 (external edit)