User Tools

Site Tools


equations:continuity_equation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
equations:continuity_equation [2018/04/19 09:00]
jakobadmin [Concrete]
equations:continuity_equation [2018/05/13 09:19]
jakobadmin ↷ Links adapted because of a move operation
Line 1: Line 1:
-<WRAP lag> $\color{blue}{\frac{\partial \rho}{\partial t}}  ​\color{magenta}{\rho \vec \nabla ​ \vec v} = \color{red}{\sigma} $</​WRAP>​+<WRAP lag> $\color{blue}{\frac{\partial \rho}{\partial t}}  ​= \color{red}{\sigma} - \color{magenta}{\rho \vec \nabla ​ \vec v} $</​WRAP>​
  
 ====== Continuity Equation ====== ====== Continuity Equation ======
Line 5: Line 5:
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
  
-The continuity equation states that the $\color{red}{\text{total amount ​of quantity ​(like water) that is produced (or destroyed) inside some volume}}$ is proportional ​to the $\color{blue}{\text{rate of change of the quantity}}$ plus the $\color{magenta}{\text{total amount that flows out of the volume}}$. ​+The continuity equation states that the total $\color{blue}{\text{change ​of some quantity}}$ is equal to the $\color{red}{\text{amount that gets produced}}$ minus the amount that $\color{magenta}{\text{flows out of the volume}}$.
  
-Or formulated differently,​ the total $\color{blue}{\text{rate of change of some quantity}}$ is equal to the $\color{red}{\text{amount that gets produced}}$ minus the amount that $\color{magenta}{\text{flows out of the volume}}$.+[{{ :​equations:​venturi.gif?​nolink |Image by Thierry Dugnolle}}]
  
 If we are dealing with a conserved quantity, like energy or electric charge, the total amount that is produced or destroyed is exactly zero. If we are dealing with a conserved quantity, like energy or electric charge, the total amount that is produced or destroyed is exactly zero.
  
 +Whenever a system possesses some symmetry we know from [[theorems:​noethers_theorems|Noether'​s theorem]] that some corresponding quantity is conserved. Using Noether'​s theorem, we can then also derive the corresponding continuity equation that describes how the conserved quantity flows through the system.
  
 +----
 +
 +**Recommended further reading**
 +
 +  * [[https://​www.wired.com/​2016/​08/​perfection-continuity-equation-key-foundations-reality/​|The Perfection of the Continuity Equation, Key to the Foundations of Reality]] by WIRED magazine
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
-  * The continuity equation in __hydrodynamics__ describes the flow of mass. Here $ρ$ is fluid density and $ \vec v$ the fluid flow velocity.+  * The continuity equation in __hydrodynamics__ describes the flow of mass. Here $ρ$ is fluid density and $ \vec v$ the fluid flow velocity. In this context it is also known as one of the Euler equations of fluid dynamics.
   * The continuity equation in __electrodynamics__ describes the flow of electric charge. Here $ρ$ is the charge density and $ \vec v$ the electric flow velocity, such that $ρ \vec v = j$ is the electric current.   * The continuity equation in __electrodynamics__ describes the flow of electric charge. Here $ρ$ is the charge density and $ \vec v$ the electric flow velocity, such that $ρ \vec v = j$ is the electric current.
   * The continuity equation in __quantum mechanics__ describes the flow of probability. Here $ρ = \Psi^\dagger \Psi$ is the probability density and $ \vec v$ the probability flow velocity, such that $ρ \vec v = j =  \frac { \hbar } { 2m i } [ \Psi ^ { * } ( \nabla \Psi ) - \Psi ( \nabla \Psi ^ { * } )]$ is the probability current .   * The continuity equation in __quantum mechanics__ describes the flow of probability. Here $ρ = \Psi^\dagger \Psi$ is the probability density and $ \vec v$ the probability flow velocity, such that $ρ \vec v = j =  \frac { \hbar } { 2m i } [ \Psi ^ { * } ( \nabla \Psi ) - \Psi ( \nabla \Psi ^ { * } )]$ is the probability current .
  
--->​Derivation of the continuity ​equation in hydrodynamics#​+In general, ​continuity ​equations can be derived by using [[theorems:​noethers_theorems|Noether'​s theorem]].
  
  
-<-- 
  
 -->​Derivation of the continuity equation in electrodynamics#​ -->​Derivation of the continuity equation in electrodynamics#​
  
 +We start with Ampere'​s law, which is one of the [[equations:​maxwell_equations|Maxwell equations]]
 +$$ \nabla \times ​ H  =  J  + \frac { \partial ​ D  } { \partial t }.$$
 +
 +Next we take the divergence of this equation, which yields
 +$$\nabla \cdot ( \nabla \times ​ H  ) = \nabla \cdot  J  + \frac { \partial ( \nabla \cdot  D  ) } { \partial t }
 + $$
 +The divergence of a curl is zero, and therefore we get
 +$$ \nabla \cdot  J  + \frac { \partial ( \nabla \cdot  D  ) } { \partial t } = 0.
 +$$
 +Finally, we use another [[equations:​maxwell_equations|Maxwell equation]], namely [[formulas:​gauss_law|Gauss law]], ​
 +$$\nabla \cdot  D  = \rho
 + $$
 +and substitute it into the previous equation
 +$$ \nabla \cdot  J  + \frac { \partial \rho } { \partial t } = 0 .$$
 +This is exactly the continuity equation.
  
 <-- <--
Line 30: Line 50:
 -->​Derivation of the continuity equation in quantum mechanics# -->​Derivation of the continuity equation in quantum mechanics#
  
 +The probability density is quantum mechanics is $\rho = \Psi^* \Psi$. The partial derivative of $\rho$ with respect to time is therefore
 +$$ \frac { \partial \rho } { \partial t } = \frac { \partial | \Psi | ^ { 2} } { \partial t } = \frac { \partial } { \partial t } ( \Psi ^ { * } \Psi ) = \Psi ^ { * } \frac { \partial \Psi } { \partial t } + \Psi \frac { \partial \Psi ^ { * } } { \partial t } . $$
  
 +Next, we consider the [[equations:​schroedinger_equation|Schrödinger equation]]
 +
 +$$ - \frac { \hbar ^ { 2} } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi ^ { * } = - i \hbar \frac { \partial \Psi ^ { * } } { \partial t }.$$
 +
 +Taking the complex conjugate of it yields
 +
 +$$- \frac { \hbar ^ { 2} } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi ^ { * } = - i \hbar \frac { \partial \Psi ^ { * } } { \partial t }. $$
 +
 +Multiplying the Schrödinger equation with $\Psi^\star$ and the complex conjugated Schrödinger equation with $\Psi$ yields the two equations
 +
 +$$ \Psi \cdot \frac { \partial \Psi } { \partial t } = \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi ^ { * } } { 2m } \nabla ^ { 2} \Psi + U \Psi ^ { * } \Psi ]$$
 +$$ \Psi \frac { \partial \Psi ^ { * } } { \partial t } = - \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi \Psi ^ { * } ] .$$
 +
 +Putting these two equations into our equation for $\frac { \partial \rho } { \partial t }$ from above yields
 +$$ \frac { \partial \rho } { \partial t } = \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi ^ { * } } { 2m } \nabla ^ { 2} \Psi + U \Psi ^ { * } \Psi ] - \frac { 1} { i \hbar } [ - \frac { \hbar ^ { 2} \Psi } { 2m } \nabla ^ { 2} \Psi ^ { * } + U \Psi \Psi ^ { * } ]$$
 +$$ = \frac { \hbar } { 2i m } [ \Psi \nabla ^ { 2} \Psi ^ { * } - \Psi ^ { * } \nabla ^ { 2} \Psi ] .$$
 +
 +The second puzzle piece that appears in the continuity equation is the current $j$ which in quantum mechanics is given by
 +$$j =  \frac { \hbar } { 2m i } [ \Psi ^ { * } ( \nabla \Psi ) - \Psi ( \nabla \Psi ^ { * } )]$. $$
 +Taking the divergence of it (since $\nabla j$ is what appears in the continuity equation) ​ yields
 +$$ \nabla \cdot j = \nabla \cdot [ \frac { \hbar } { 2m i } ( \Phi ^ { * } ( \nabla \Phi ) - \Psi ( \nabla \Psi ^ { * } ) ) ]
 + $$
 +$$ = - \frac { \hbar } { 2m i } [ \Psi ( \nabla ^ { 2} \Psi ^ { * } ) - \Psi ^ { * } ( \nabla ^ { 2} \Psi ) ]. $$
 +
 +This is exactly, except for the minus sign what we derived above for $\frac { \partial \rho } { \partial t }$ and therefore we can conclude
 +
 +$$ \frac { \partial \rho } { \partial t } = - \nabla \cdot j $$
 +$$ \therefore \frac { \partial \rho } { \partial t } +  \nabla \cdot j =0. $$
 +
 +This is exactly the continuity equation that we wanted to derive.
 <-- <--
 +
 +----
 +
 +**Integral Form of the continuity equation**
 +
 +By integrating the continuity equation over some volume $V$, we get
 +
 +$$ \int_V \frac { \partial \rho } { \partial t } +  \int_V \nabla \cdot j =0  $$
 +
 +For the second term, we can then use [[basic_tools:​vector_calculus:​gauss_theorem|Gauss divergence theorem]] that tells us that we can replace the volume integral over some divergence by a surface integral
 +
 +$$ \int_V \frac { \partial \rho } { \partial t } +  \int_S ​ j =0 , $$
 +
 +where $S$ denotes the surface of our volume $V$. This is the integral form of the continuity equation.
 +
 +  * The first term simply describes the total amount of the quantity, e.g. electric charge or mass, inside our volume. ​
 +  * The second term describes the amount that flows into the surface minus the amount that flows out of the surface.
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
-<note tip> +In relativistic theories, the charge density and the current live in one object called ​the current four-vector (or four-current) $j_\mu = (c \rho, \vec j),$ where $c$ denotes ​the speed of light and is inserted such that all components have the same dimensionsUsing this definition, the continuity equation reads
-The motto in this section is: //the higher ​the level of abstraction, ​the better//. +
-</​note>​+
  
 +$$ \partial_\mu j^\mu = 0. $$
 +
 +The continuity equation can also be written using the [[advanced_tools:​differential_forms|3-form]] of charge density
 +
 +$$ d \gamma = 0$$
 +
 +where
 +$$ \gamma ​ = - \frac { 1} { c } ( 1,d x ^ { 2} \wedge d x ^ { 3} + i _ { 2} d x ^ { 3} \wedge d x ^ { 1} + j _ { 3} d x ^ { 1} \wedge d x ^ { 2} ) \wedge d x ^ { 0} + \rho d x ^ { \prime } \wedge d x ^ { 2} \wedge d x ^ { 3}.$$
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
   ​   ​
Line 46: Line 121:
   * the continuity equation in electrodynamics that encodes the conservation of electric charge,   * the continuity equation in electrodynamics that encodes the conservation of electric charge,
   * the continuity equation in hydrodynamics that encodes the conservation of mass.   * the continuity equation in hydrodynamics that encodes the conservation of mass.
 +  * the continuity equation in quantum mechanics that encodes the conservation of probability.
  
 </​tabbox>​ </​tabbox>​
  
  
equations/continuity_equation.txt · Last modified: 2020/03/03 10:38 by 128.179.254.165