User Tools

Site Tools


basic_tools:variational_calculus:the_variational_problem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
basic_tools:variational_calculus:the_variational_problem [2018/03/14 15:17]
iiqof created
basic_tools:variational_calculus:the_variational_problem [2018/03/14 16:25] (current)
iiqof Clarified things
Line 4: Line 4:
  
 $$ $$
-\delta S[q|\phi] = +0 = \delta S[q|\phi] = 
 \frac{\partial}{\partial \varepsilon} \int_a^b F\circ \Gamma(q+\varepsilon \phi) dt =  ​ \frac{\partial}{\partial \varepsilon} \int_a^b F\circ \Gamma(q+\varepsilon \phi) dt =  ​
 \int_a^b ​ \frac{\partial}{\partial \varepsilon} F(q+\varepsilon \phi, \dot q+\varepsilon \dot\phi)dt =  \int_a^b ​ \frac{\partial}{\partial \varepsilon} F(q+\varepsilon \phi, \dot q+\varepsilon \dot\phi)dt = 
-\int_a^b ​ \frac{\partial F}{\partial q}\phi + \frac{\partial F}{\partial \dot q}\dot\phi dt 
 $$ $$
 +$$
 +\int_a^b ​ \frac{\partial F}{\partial q}\phi + \frac{\partial F}{\partial \dot q}\dot\phi dt = \left[\frac{\partial F}{\partial \dot q}\phi\right]^b_a + \int_a^b ​ \left(\frac{\partial F}{\partial q} - \frac{d}{dt}\frac{\partial F}{\partial \dot q}\right)\phi dt
 +$$
 +
 +
 +We haven'​t made made any assumption of the form of $q$ and the space $\Omega$ where it resides. On the standard variational problem $\Omega$ is the space of the functions that $q(a)=q_a$ and $q(b)=q_b$, i.e, **fixed boundaries**,​ and are sufficiently smooth. Also, we asumed a standart lift: $\Gamma(q) = (q, \dot q)$.
 +
 +
 +Saying that, now the [[basic_tools:​variational_calculus:​fundamental_lemma|fundamental lemma of variational calculus]] enters. The variation, $\phi$, is arbitrary but  with $\phi(a)=\phi(b)=0$. The later assertion, makes the term outside the integral zero. On the other hand, by the fundamental lemma, the interior parentheisi is zero, giving:
 +
 +$$
 +\frac{\partial F}{\partial q} - \frac{d}{dt}\frac{\partial F}{\partial \dot q} = 0
 +$$
 +
 +that is, the [[equations:​euler_lagrange_equations|Euler-Lagrange equations]]. ​
 +
 +
 +
 +__** Some variations worth studying**__
 +
 +1. Change $\Omega$: the functions do not need to be continous at all points, this gives collisions on a variational setting.
 +
 +2. Variable end points, i.e. $a$ and $b$ vary with $\varepsilon$
 +
 +3. Change the interdependencies of the lift $\Gamma$. This will lead to Vakonomic Mechanics.
  
  
basic_tools/variational_calculus/the_variational_problem.1521037027.txt.gz ยท Last modified: 2018/03/14 14:17 (external edit)