User Tools

Site Tools


basic_tools:calculus:leibniz_integration_formula

Link to this comparison view

Next revision
Previous revision
basic_tools:calculus:leibniz_integration_formula [2018/03/10 17:53]
iiqof created
basic_tools:calculus:leibniz_integration_formula [2018/03/28 12:28] (current)
jakobadmin
Line 1: Line 1:
 ====== Leibniz Integration Formula ====== ====== Leibniz Integration Formula ======
  
 +<tabbox Intuitive>​
  
 +<tabbox Concrete>​
 This tool gives a nice formula to the derivative of a one dimensional integral with dependencies to the varied quantity every where, with $f, a$ and $b$ having the right conditions This tool gives a nice formula to the derivative of a one dimensional integral with dependencies to the varied quantity every where, with $f, a$ and $b$ having the right conditions
  
 $$ $$
-\left.\frac{\partial}{\partial \varepsilon} \int_{a(\varepsilon)}^{b(\varepsilon)}f(\varepsilon,​ x) d x \right|_{\varepsilon=0} =  \int_{a}^{b} \left.\frac{\partial}{\partial \varepsilon} f(\varepsilon,​ x)\right|_{\varepsilon=0} d x + f(0,​b)\left.\frac{\partial}{\partial \varepsilon} b(\varepsilon)\right|_{\varepsilon=0} - f(0,​a)\left.\frac{\partial}{\partial \varepsilon} a(\varepsilon)\right|_{\varepsilon=0} ​+\left.\frac{\partial}{\partial \varepsilon} \int_{a(\varepsilon)}^{b(\varepsilon)}f(\varepsilon,​ x) d x \right|_{\varepsilon=0} = \\ \int_{a}^{b} \left.\frac{\partial}{\partial \varepsilon} f(\varepsilon,​ x)\right|_{\varepsilon=0} d x + f(0,​b)\left.\frac{\partial}{\partial \varepsilon} b(\varepsilon)\right|_{\varepsilon=0} - f(0,​a)\left.\frac{\partial}{\partial \varepsilon} a(\varepsilon)\right|_{\varepsilon=0} ​
 $$  $$ 
  
 +<tabbox Abstract>​
  
 +<tabbox Why is it interesting?>​
  
-** Uses and further concepts**+This formula is really nice in one dimenisonal [[basic tools:​variational calculus|Variational Calculus]] ​and 
 +with $a(0) = a$, $b(0) = b$, and for the particle mechanics [[theorems:​noethers_theorems|Noether'​s Theorem]]. For integrals over arbitrary manifolds, it generalizes to the [[start|Lie derivative]] of a volume element. ​
  
-This formula is really nice on one dimenisonal [[basic tools:​variational calculus|Variational Calculus]] and +</​tabbox>​
-with $a(0) = a$, $b(0) = b$, and for the particle mechanics [[advanced_tools:​noethers_theorems|Noether'​s Theorem]]. For integrals over arbitrary manifolds, it generalizes to the [[|Lie derivative]] of a volume element. ​+
basic_tools/calculus/leibniz_integration_formula.1520700808.txt.gz · Last modified: 2018/03/10 16:53 (external edit)