Next revision | Previous revision | ||
basic_tools:calculus:leibniz_integration_formula [2018/03/10 17:53] iiqof created |
basic_tools:calculus:leibniz_integration_formula [2018/03/28 12:28] (current) jakobadmin |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== Leibniz Integration Formula ====== | ====== Leibniz Integration Formula ====== | ||
+ | <tabbox Intuitive> | ||
+ | <tabbox Concrete> | ||
This tool gives a nice formula to the derivative of a one dimensional integral with dependencies to the varied quantity every where, with $f, a$ and $b$ having the right conditions | This tool gives a nice formula to the derivative of a one dimensional integral with dependencies to the varied quantity every where, with $f, a$ and $b$ having the right conditions | ||
$$ | $$ | ||
- | \left.\frac{\partial}{\partial \varepsilon} \int_{a(\varepsilon)}^{b(\varepsilon)}f(\varepsilon, x) d x \right|_{\varepsilon=0} = \int_{a}^{b} \left.\frac{\partial}{\partial \varepsilon} f(\varepsilon, x)\right|_{\varepsilon=0} d x + f(0,b)\left.\frac{\partial}{\partial \varepsilon} b(\varepsilon)\right|_{\varepsilon=0} - f(0,a)\left.\frac{\partial}{\partial \varepsilon} a(\varepsilon)\right|_{\varepsilon=0} | + | \left.\frac{\partial}{\partial \varepsilon} \int_{a(\varepsilon)}^{b(\varepsilon)}f(\varepsilon, x) d x \right|_{\varepsilon=0} = \\ \int_{a}^{b} \left.\frac{\partial}{\partial \varepsilon} f(\varepsilon, x)\right|_{\varepsilon=0} d x + f(0,b)\left.\frac{\partial}{\partial \varepsilon} b(\varepsilon)\right|_{\varepsilon=0} - f(0,a)\left.\frac{\partial}{\partial \varepsilon} a(\varepsilon)\right|_{\varepsilon=0} |
$$ | $$ | ||
+ | <tabbox Abstract> | ||
+ | <tabbox Why is it interesting?> | ||
- | ** Uses and further concepts** | + | This formula is really nice in one dimenisonal [[basic tools:variational calculus|Variational Calculus]] and |
+ | with $a(0) = a$, $b(0) = b$, and for the particle mechanics [[theorems:noethers_theorems|Noether's Theorem]]. For integrals over arbitrary manifolds, it generalizes to the [[start|Lie derivative]] of a volume element. | ||
- | This formula is really nice on one dimenisonal [[basic tools:variational calculus|Variational Calculus]] and | + | </tabbox> |
- | with $a(0) = a$, $b(0) = b$, and for the particle mechanics [[advanced_tools:noethers_theorems|Noether's Theorem]]. For integrals over arbitrary manifolds, it generalizes to the [[|Lie derivative]] of a volume element. | + |