User Tools

Site Tools


basic_notions:energy

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
basic_notions:energy [2018/04/09 06:39]
ronaldwilliams [Concrete]
basic_notions:energy [2018/04/12 16:51] (current)
bogumilvidovic [Concrete]
Line 15: Line 15:
  
 In addition, energy is responsible for temporal translations. We say energy generates temporal translations. ​ In addition, energy is responsible for temporal translations. We say energy generates temporal translations. ​
 +
 +
 +The total energy is defined as
 +\begin{equation}
 + E(t) \equiv K(t) + V(q(t)),
 +\end{equation}
 +
 +where $K$ denotes the kinetic energy and $V$ the potential energy.
 +
 +-->Proof the the total energy is conserved#
 +
 +For a system with a conservative force the relationship between force and potential energy is given by $
 +\nabla V \equiv - F$.
 +
 +In addition, [[equations:​newtons_second_law|Newton'​s second law]] $F = ma$ implies
 +\[
 + ​\begin{split}
 +  \frac{d}{dt}\left[K(t)+V(q(t))\right] &= F(q(t))\cdot v(t) + 
 +  \nabla V(q(t))\cdot v(t) \\
 +  &= 0, \qquad\text{(because $F=-\nabla V$)}.
 + ​\end{split}
 +\]
 +
 +<--
 +----
 +
 +
 +**Kinetic Energy**
 +
 +Kinetic energy is defined as
 +\begin{equation}
 + K(t) \equiv \frac{1}{2}m\,​v(t)\cdot v(t).
 +\end{equation}
 +This quantity is useful because
 +\[
 +\begin{split}
 + ​\frac{d}{dt}K(t) &= m\,​v(t)\cdot a(t) \\
 +               &​= F(q(t))\cdot v(t).
 +\end{split}
 +\]
 +We can see here that the kinetic energy goes up whenever we push an object in the direction
 +of its velocity. Moreover, it goes down whenever we push it in the opposite
 +direction. ​
 +
 +In addition, we have
 +\[
 +\begin{split}
 + ​K(t_1)-K(t_0) &= \int_{t_0}^{t_1} F(q(t))\cdot v(t)\,dt \\
 + &= \int_{t_0}^{t_1} F(q(t))\cdot \dot{q}(t)\,​ dt.
 +\end{split}
 +\]
 +This tells us that the change of kinetic energy is equal to the __work__ done by the 
 +force. The work is defined as the integral of $F$ along the trajectory. ​  
 +
 +----
 +
 +**Potential Energy**
 +
 +$
 +\nabla V \equiv - F,$
 +
 +where $F$ denotes the force. ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
basic_notions/energy.1523248774.txt.gz ยท Last modified: 2018/04/09 04:39 (external edit)