User Tools

Site Tools


basic_notions:energy

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
basic_notions:energy [2018/03/28 13:11]
jakobadmin
basic_notions:energy [2018/04/12 16:51] (current)
bogumilvidovic [Concrete]
Line 12: Line 12:
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
-<note tip> +Energy is the conserved quantity that we derive using Noether'​s theorem if our system is symmetric under temporal translations. 
-In this section things should be explained by analogy ​and with pictures ​and, if necessarysome formulas+ 
-</note> +In addition, energy is responsible for temporal translations. We say energy generates temporal translations.  
- + 
 + 
 +The total energy is defined as 
 +\begin{equation} 
 + E(t) \equiv K(t) + V(q(t)), 
 +\end{equation} 
 + 
 +where $K$ denotes the kinetic energy ​and $V$ the potential energy. 
 + 
 +-->Proof the the total energy is conserved#​ 
 + 
 +For a system ​with a conservative force the relationship between force and potential energy is given by $ 
 +\nabla V \equiv - F$. 
 + 
 +In addition[[equations:​newtons_second_law|Newton'​s second law]] $F = ma$ implies 
 +\[ 
 + ​\begin{split} 
 +  \frac{d}{dt}\left[K(t)+V(q(t))\right] &= F(q(t))\cdot v(t) +  
 +  \nabla V(q(t))\cdot v(t) \\ 
 +  &= 0\qquad\text{(because $F=-\nabla V$)}. 
 + ​\end{split} 
 +\] 
 + 
 +<-- 
 +---- 
 + 
 + 
 +**Kinetic Energy** 
 + 
 +Kinetic energy is defined as 
 +\begin{equation} 
 + K(t) \equiv \frac{1}{2}m\,​v(t)\cdot v(t). 
 +\end{equation} 
 +This quantity is useful because 
 +\[ 
 +\begin{split} 
 + ​\frac{d}{dt}K(t) &= m\,​v(t)\cdot a(t) \\ 
 +               &​= F(q(t))\cdot v(t). 
 +\end{split} 
 +\] 
 +We can see here that the kinetic energy goes up whenever we push an object in the direction 
 +of its velocity. Moreover, it goes down whenever we push it in the opposite 
 +direction.  
 + 
 +In addition, we have 
 +\[ 
 +\begin{split} 
 + ​K(t_1)-K(t_0) &= \int_{t_0}^{t_1} F(q(t))\cdot v(t)\,dt \\ 
 + &= \int_{t_0}^{t_1} F(q(t))\cdot \dot{q}(t)\,​ dt. 
 +\end{split} 
 +\] 
 +This tells us that the change of kinetic energy is equal to the __work__ done by the  
 +force. The work is defined as the integral of $F$ along the trajectory. ​   
 + 
 +---- 
 + 
 +**Potential Energy** 
 + 
 +
 +\nabla V \equiv - F,$ 
 + 
 +where $F$ denotes the force. ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
basic_notions/energy.1522235502.txt.gz · Last modified: 2018/03/28 11:11 (external edit)