User Tools

Site Tools


basic_notions:energy

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
basic_notions:energy [2018/03/28 13:11]
jakobadmin
basic_notions:energy [2018/04/12 16:50]
bogumilvidovic [Concrete]
Line 12: Line 12:
 <tabbox Concrete> ​ <tabbox Concrete> ​
  
-<note tip> +Energy is the conserved quantity that we derive using Noether'​s theorem if our system is symmetric under temporal translations. 
-In this section things should be explained by analogy ​and with pictures ​and, if necessarysome formulas+ 
-</note> +In addition, energy is responsible for temporal translations. We say energy generates temporal translations.  
- + 
 + 
 +The total energy is defined as 
 +\begin{equation} 
 + E(t) \equiv K(t) + V(q(t)), 
 +\end{equation} 
 + 
 +where $K$ denotes the kinetic energy ​and $V$ the potential energy. 
 + 
 +-->Proof the the total energy is conserved#​ 
 + 
 +For a system ​with a conservative force the relationship between force and potential energy is given by $ 
 +\grad V \equiv - F$. 
 + 
 +In addition[[equations:​newtons_second_law|Newton'​s second law]] $F = ma$ implies 
 +\[ 
 + ​\begin{split} 
 +  \frac{d}{dt}\left[K(t)+V(q(t))\right] &= F(q(t))\cdot v(t) +  
 +  \grad V(q(t))\cdot v(t) \\ 
 +  &= 0\qquad\text{(because $F=-\grad V$)}. 
 + ​\end{split} 
 +\] 
 + 
 +<-- 
 +---- 
 + 
 + 
 +**Kinetic Energy** 
 + 
 +Kinetic energy is defined as 
 +\begin{equation} 
 + K(t) \equiv \frac{1}{2}m\,​v(t)\cdot v(t). 
 +\end{equation} 
 +This quantity is useful because 
 +\[ 
 +\begin{split} 
 + ​\frac{d}{dt}K(t) &= m\,​v(t)\cdot a(t) \\ 
 +               &​= F(q(t))\cdot v(t). 
 +\end{split} 
 +\] 
 +We can see here that the kinetic energy goes up whenever we push an object in the direction 
 +of its velocity. Moreover, it goes down whenever we push it in the opposite 
 +direction.  
 + 
 +In addition, we have 
 +\[ 
 +\begin{split} 
 + ​K(t_1)-K(t_0) &= \int_{t_0}^{t_1} F(q(t))\cdot v(t)\,dt \\ 
 + &= \int_{t_0}^{t_1} F(q(t))\cdot \dot{q}(t)\,​ dt. 
 +\end{split} 
 +\] 
 +This tells us that the change of kinetic energy is equal to the __work__ done by the  
 +force. The work is defined as the integral of $F$ along the trajectory. ​   
 + 
 +---- 
 + 
 +**Potential Energy** 
 + 
 +
 +\grad V \equiv - F,$ 
 + 
 +where $F$ denotes the force. ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
basic_notions/energy.txt · Last modified: 2018/04/12 16:51 by bogumilvidovic