User Tools

Site Tools


basic_notions:energy

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
basic_notions:energy [2017/12/04 08:01]
127.0.0.1 external edit
basic_notions:energy [2018/04/12 16:50]
bogumilvidovic [Concrete]
Line 1: Line 1:
 ====== Energy ====== ====== Energy ======
  
-<tabbox Why is it interesting?> ​ 
  
-<​blockquote>​Energy is the most important concept in physics<​cite>​[[https://​gravityandlevity.wordpress.com/​2010/​01/​30/​the-universe-is-a-giant-energy-minimization-machine/​|Brian Skinner]]</​cite></​blockquote>​ 
  
-<​tabbox ​Layman+<​tabbox ​Intuitive
  
   * https://​gravityandlevity.wordpress.com/​2009/​04/​13/​force-and-energy-which-is-more-real/​   * https://​gravityandlevity.wordpress.com/​2009/​04/​13/​force-and-energy-which-is-more-real/​
Line 12: Line 10:
   * https://​gravityandlevity.wordpress.com/​2009/​05/​16/​the-equivalence-of-mass-and-energy-the-center-of-energy/​   * https://​gravityandlevity.wordpress.com/​2009/​05/​16/​the-equivalence-of-mass-and-energy-the-center-of-energy/​
   ​   ​
-<​tabbox ​Student+<​tabbox ​Concrete
  
-<note tip> +Energy is the conserved quantity that we derive using Noether'​s theorem ​if our system is symmetric under temporal translations.
-In this section things should be explained by analogy and with pictures and, if necessary, some formulas. +
-</​note>​ +
-  +
-<tabbox Researcher> ​+
  
-<note tip> +In additionenergy is responsible for temporal translations. We say energy generates temporal translations
-The motto in this section is: //the higher the level of abstractionthe better//. +
-</​note>​+
  
-  ​ 
-<tabbox Examples> ​ 
  
---> Example1#+The total energy is defined as 
 +\begin{equation} 
 + E(t) \equiv K(t) + V(q(t)), 
 +\end{equation}
  
-  +where $K$ denotes the kinetic energy and $V$ the potential energy.
-<--+
  
---> ​Example2:#+-->Proof the the total energy is conserved# 
 + 
 +For a system with a conservative force the relationship between force and potential energy is given by $ 
 +\grad V \equiv - F$. 
 + 
 +In addition, [[equations:​newtons_second_law|Newton'​s second law]] $F = ma$ implies 
 +\[ 
 + ​\begin{split} 
 +  \frac{d}{dt}\left[K(t)+V(q(t))\right] &= F(q(t))\cdot v(t) +  
 +  \grad V(q(t))\cdot v(t) \\ 
 +  &= 0, \qquad\text{(because $F=-\grad V$)}. 
 + ​\end{split} 
 +\]
  
-  
 <-- <--
 +----
 +
 +
 +**Kinetic Energy**
 +
 +Kinetic energy is defined as
 +\begin{equation}
 + K(t) \equiv \frac{1}{2}m\,​v(t)\cdot v(t).
 +\end{equation}
 +This quantity is useful because
 +\[
 +\begin{split}
 + ​\frac{d}{dt}K(t) &= m\,​v(t)\cdot a(t) \\
 +               &​= F(q(t))\cdot v(t).
 +\end{split}
 +\]
 +We can see here that the kinetic energy goes up whenever we push an object in the direction
 +of its velocity. Moreover, it goes down whenever we push it in the opposite
 +direction. ​
 +
 +In addition, we have
 +\[
 +\begin{split}
 + ​K(t_1)-K(t_0) &= \int_{t_0}^{t_1} F(q(t))\cdot v(t)\,dt \\
 + &= \int_{t_0}^{t_1} F(q(t))\cdot \dot{q}(t)\,​ dt.
 +\end{split}
 +\]
 +This tells us that the change of kinetic energy is equal to the __work__ done by the 
 +force. The work is defined as the integral of $F$ along the trajectory. ​  
 +
 +----
 +
 +**Potential Energy**
 +
 +$
 +\grad V \equiv - F,$
 +
 +where $F$ denotes the force. ​
 +<tabbox Abstract> ​
 +
 +<note tip>
 +The motto in this section is: //the higher the level of abstraction,​ the better//.
 +</​note>​
  
-<tabbox FAQ> ​ 
   ​   ​
-<​tabbox ​History+<​tabbox ​Why is it interesting?>​  
 + 
 +<​blockquote>​Energy is the most important concept in physics<​cite>​[[https://​gravityandlevity.wordpress.com/​2010/​01/​30/​the-universe-is-a-giant-energy-minimization-machine/​|Brian Skinner]]</​cite></​blockquote>
  
 </​tabbox>​ </​tabbox>​
  
  
basic_notions/energy.txt · Last modified: 2018/04/12 16:51 by bogumilvidovic